386 research outputs found

    Identification of wheat varieties and glutenin subunits: capillary electrophoresis and computer-assisted interpretation of results

    Get PDF
    Established and supported under the Australian Government’s Cooperative Research Centre Progra

    Acetate Acetylacetonate Ampy Ruthenium(II) Complexes as Efficient Catalysts for Ketone Transfer Hydrogenation

    Get PDF
    The mixed acetate acetylacetonate (acac) ruthenium(II) phosphine complexes Ru(OAc)(acac)P2 [P2=(PPh3)2, Ph2P(CH2)4PPh2 (dppb)] were prepared by protonation of Ru(OAc)2(PPh3)2 with acetylacetone in dichloromethane. Reaction of the dppb derivative with 2-(aminomethyl)pyridine (ampy) affords the complex Ru(OAc)(acac)(ampy)(dppb), which converts to [Ru(acac)(ampy)(dppb)](OAc) in toluene at 90 \ub0C. In the former derivative the ampy ligand is monodentate and coordinates through the NH2-moiety. The isolated acac complexes are active catalysts for the transfer hydrogenation of ketones with loadings as low as 0.01 mol%, the ampy having a strong accelerating effect. Several aromatic and aliphatic ketone substrates are converted to their corresponding alcohols, and different electronic influences through substituents on acetophenone are tolerated

    Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma

    Full text link
    The two-dimensional one-component plasma (2dOCP) is a system of NN mobile particles of the same charge qq on a surface with a neutralising background. The Boltzmann factor of the 2dOCP at temperature TT can be expressed as a Vandermonde determinant to the power Γ=q2/(kBT)\Gamma=q^{2}/(k_B T). Recent advances in the theory of symmetric and anti-symmetric Jack polymonials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for NN values up to 14 and Γ\Gamma equal to 4, 6 and 8. In this work, we explore two applications of this formalism to study the moments of the pair correlation function of the 2dOCP on a sphere, and the distribution of radial linear statistics of the 2dOCP in the plane

    Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals

    Full text link
    The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit clusters of size at most k: they vanish when k+1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal {\mathcal I}^{(k,r)}_N is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k+1 commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we present exceptions to an often made statement concerning the clustering property of the ordinary Jack polynomials for (k,r,N)-admissible partitions (see Footnote 2); 2) Conjecture 14 is substantiated with the extensive computational evidence presented in the new appendix C; 3) the various tests supporting Conjecture 16 are reporte

    Kondo Effect in Systems with Spin Disorder

    Full text link
    We consider the role of static disorder in the spin sector of the one- and two-channel Kondo models. The distribution functions of the disorder-induced effective energy splitting between the two levels of the Kondo impurity are derived to the lowest order in the concentration of static scatterers. It is demonstrated that the distribution functions are strongly asymmetric, with the typical splitting being parametrically smaller than the average rms value. We employ the derived distribution function of splittings to study the temperature dependence of the low-temperature conductance of a sample containing an ensemble of two-channel Kondo impurities. The results are used to analyze the consistency of the two-channel Kondo interpretation of the zero-bias anomalies observed in Cu/(Si:N)/Cu nanoconstrictions.Comment: 16 pages, 5 figures, REVTe

    Skeletal muscle contraction. The thorough definition of the contractile event requires both load acceleration and load mass to be known

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of this work is to show that the correct and complete definition of the system of muscle contraction requires the knowledge of both the mass and the acceleration of the load.</p> <p>Results</p> <p>The aim is achieved by making use of a model of muscle contraction that operates into two phases. The first phase considers the effects of the power stroke in the absence of any hindrance. In the second phase viscous hindrance is introduced to match the experimental speed and yield of the contraction. It is shown that, at constant force of the load, changing load acceleration changes the time course of the pre-steady state of myofibril contraction. The decrease of the acceleration of the load from 9.8 m.s<sup>-2 </sup>to 1 m.s<sup>-2 </sup>increases the time length of the pre-steady state of the contraction from a few microseconds to many hundreds of microseconds and decreases the stiffness of the active fibre.</p> <p>Conclusions</p> <p>We urge that in the study of muscle contraction both the mass and the acceleration of the load are specified.</p

    Thermal desorption of CH4 retained in CO2 ice

    Full text link
    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.Comment: 8 pages, accepted for publication in Astrophysics & Space Scienc
    corecore