7,301 research outputs found

    Soviet Inheritance Cases in American Courts and the Soviet Property Regime

    Get PDF
    Many American states have statutes limiting transmission of monies from estates in this country to citizens of countries behind the Iron Curtain. American courts have come under heavy criticism for construing these statutes unfavorably to foreign heirs, especially where transmission to heirs in the Soviet Union is withheld. This article analyzes the relevant American and Soviet law and concludes that American courts, while they have not always been completely objective, nevertheless may be justified in withholding distribution from Soviet citizens

    Ideal strengths and bonding properties of PuO2 under tension

    Full text link
    We perform a first-principles computational tensile test on PuO2_{2} based on density-functional theory within local density approximation (LDA)+\emph{U} formalism to investigate its structural, mechanical, magnetic, and intrinsic bonding properties in the four representative directions: [001], [100], [110], and [111]. The stress-strain relations show that the ideal tensile strengths in the four directions are 81.2, 80.5, 28.3, and 16.8 GPa at strains of 0.36, 0.36, 0.22, and 0.18, respectively. The [001] and [100] directions are prominently stronger than other two directions since that more Pu−-O bonds participate in the pulling process. Through charge and density of states analysis along the [001] direction, we find that the strong mixed ionic/covalent character of Pu−-O bond is weakened by tensile strain and PuO2_{2} will exhibit an insulator-to-metal transition after tensile stress exceeds about 79 GPa.Comment: 11 pages, 6 figure

    The role of different negatively charged layers in Ca10(Fe1-xPtxAs)10(Pt3+yAs8) and superconductivity at 30 K in electron-doped (Ca0.8La0.2)10(FeAs)10(Pt3As8)

    Full text link
    The recently discovered compounds Ca10(Fe1-xPtxAs)10(Pt3+yAs8) exhibit superconductivity up to 38 K, and contain iron arsenide (FeAs) and platinum arsenide (Pt3+yAs8) layers separated by layers of Ca atoms. We show that high Tc's above 15 K only emerge if the iron-arsenide layers are at most free of platinum-substitution (x \rightarrow 0) in contrast to recent reports. In fact Pt-substitution is detrimental to higher Tc, which increases up to 38 K only by charge doping of pure FeAs layers. We point out, that two different negatively charged layers [(FeAs)10]n- and (Pt3+yAs8)m- compete for the electrons provided by the Ca2+ ions, which is unique in the field of iron-based superconductors. In the parent compound Ca10(FeAs)10(Pt3As8), no excess charge dopes the FeAs-layer, and superconductivity has to be induced by Pt-substitution, albeit below 15 K. In contrast, the additional Pt-atom in the Pt4As8layer shifts the charge balance between the layers equivalent to charge doping by 0.2 electrons per FeAs. Only in this case Tc raises to 38 K, but decreases again if additionally platinum is substituted for iron. This charge doping scenario is supported by our discovery of superconductivity at 30 K in the electron-doped La-1038 compound (Ca0.8La0.2)10(FeAs)10(Pt3As8) without significant Pt-substitution.Comment: 4 pages, 4 figure

    Surface properties of the clean and Au/Pd covered Fe3_3O4_4(111): a DFT and DFT+UU study

    Full text link
    The spin-density functional theory (DFT) and DFT+UU with Hubbard UU term accounting for on-site Coulomb interactions were applied to investigate structure, stability, and electronic properties of different terminations of the Fe3_3O4_4(111) surface. All terminations of the ferrimagnetic Fe3_3O4_4(111) surface exhibit very large (up to 90%) relaxations of the first four interlayer distances, decreasing with the oxide layer depth. Our calculations predict the iron terminated surface to be most stable in a wide range of the accessible values of the oxygen chemical potential. The adsorption of Au and Pd on two stable Fe- and O-terminated surfaces is studied. Our results show that Pd binds stronger than Au both to the Fe- and O-terminated surface. DFT+UU gives stronger bonding than DFT. The bonding of both adsorbates to the O-terminated magnetite surface is by 1.5-2.5 eV stronger than to the Fe-terminated surface

    Successful Clerical Cost Control

    Get PDF

    Measurements on a Low-wing Model in the Rotating Jet and Comparison with Flight Measurements

    Get PDF
    The present report deals with six-component measurements in the small tunnel of the DVL on a model of the BFW-M 27b(sub 1), which were made to determine the effect of rolling and yawing on the air forces and moments. The wind was given a spiral motion by means of a rotating screen, the model being suspended in the conventional manner

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
    • …
    corecore