11,506 research outputs found

    Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and H. ensifer and the Geryonid Crab Chaceon granulatus in Palau

    Get PDF
    Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes

    On the Distribution and Fishery Potential of the Japanese Red Crab Chaceon granulatus in the Palauan Archipelago, Western Caroline Islands

    Get PDF
    A deep-water trapping survey in the Palauan archipelago, Western Caroline Islands, has revealed an abundance of the Japanese red crab, Chaceon granulatus. The recorded depth range (250-900 m) is similar to that of other geryonids, but the large numbers of females caught below 700 m is atypical. Mean yields in excess of 5 kg crabs plus 1 kg shrimp, Heterocarpus laevigatus, by-catch per trap-night were attainable at optimum depths. Chaceon granulatus is apparently a very large geryonid, with maximum weights of 2.02 kg and 1.51 kg recorded for male and female specimens, respectively. A range of body colors was observed: Orange-red shades appear to dominate the deeper waters (below 500 m) while yellow-tan colors are more abundant in the upper reaches. Preliminary evidence suggests that Chaceon granulatus is highly marketable, and the infrastructure in Palau is such that crabs could either be marketed fresh locally or airfreighted to Japan as a quick-frozen product. The high post-trapping survival rates observed indicate that maintaining crabs in live-holding tanks may be a feasible option. The large catches and quality of deep-water crabs taken suggests that the Palauan population of Chaceon granulatus may be able to support a small-scale fishery. It is not yet known whether this population is unusually large or whether these findings typify the deep forereef fauna of the region

    Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. III. Power spectrum analysis and excess isotropic component of fluctuations

    Full text link
    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 mic we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (b>20deg|b| > 20\deg) and away from the center (90deg<l<270deg90\deg< l <270\deg) we extrapolate the amplitude of the fluctuations to cosecb=0|b|=0. We find a positive intercept of δFrms=15.57.0+3.7,5.93.7+1.6,2.40.9+0.5,2.00.5+0.25\delta F_{\rm rms} = 15.5^{+3.7}_{-7.0},5.9^{+1.6}_{-3.7}, 2.4^{+0.5}_{-0.9}, 2.0^{+0.25}_{-0.5} nW/m2/sr at 1.25, 2.2,3.5 and 4.9 mic respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.62.4+1.27.6^{+1.2}_{-2.4} nW/m2/sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. For 2\deg< \theta < 15^\deg, a power-spectrum analysis yields firm upper limits of (\theta/5^\deg) \times\delta F_{\rm rms} (\theta) < 6, 2.5, 0.8, 0.5 nW/m2/sr at 1.25, 2.2, 3.5 and 4.9 mic respectively. From 10-100 mic, the upper limits <1 nW/m2/sr.Comment: Ap.J., in press. 69 pages including 24 fig

    Southern Sky Redshift Survey: Clustering of Local Galaxies

    Get PDF
    We use the two-point correlation function to calculate the clustering properties of the recently completed SSRS2 survey. The redshift space correlation function for the magnitude-limited SSRS2 is given by xi(s)=(s/5.85 h-1 Mpc)^{-1.60} for separations between 2 < s < 11 h-1 Mpc, while our best estimate for the real space correlation function is xi(r) = (r/5.36 h-1 Mpc)^{-1.86}. Both are comparable to previous measurements using surveys of optical galaxies over much larger and independent volumes. By comparing the correlation function calculated in redshift and real space we find that the redshift distortion on intermediate scales is small. This result implies that the observed redshift-space distribution of galaxies is close to that in real space, and that beta = Omega^{0.6}/b < 1, where Omega is the cosmological density parameter and b is the linear biasing factor for optical galaxies. We also use the SSRS2 to study the dependence of xi on the internal properties of galaxies. We confirm earlier results that luminous galaxies (L>L*) are more clustered than sub-L* galaxies and that the luminosity segregation is scale-independent. We find that early types are more clustered than late types, but that in the absence of rich clusters, the relative bias between early and late types in real space, is not as strong as previously estimated. Furthermore, both morphologies present a luminosity-dependent bias, with the early types showing a slightly stronger dependence on luminosity. We also find that red galaxies are significantly more clustered than blue ones, with a mean relative bias stronger than that seen for morphology. Finally, we find that the relative bias between optical and iras galaxies in real space is b_o/b_I \sim 1.4.Comment: 43 pages, uses AASTeX 4.0 macros. Includes 8 tables and 16 Postscript figures, updated reference

    The IRAS 1-Jy Survey of Ultraluminous Infrared Galaxies: I. The sample and Luminosity Function

    Full text link
    A complete flux-limited sample of 118 ultraluminous infrared galaxies (ULIGs) has been identified from the IRAS Faint Source Catalog (FSC). The selection criteria were a 60 micron flux density greater than 1 Jy in a region of the sky delta > -40 deg, |b| > 30 deg. All sources were subsequently reprocessed using coadded IRAS maps in order to obtain the best available flux estimates in all four IRAS wavelength bands. The maximum observed infrared luminosity is L_ir = 10^{12.90} L_{sun}, and the maximum redshift is z = 0.268. The luminosity function for ULIGs over the decade luminosity range L_ir = 10^{12} - 10^{13} L_{sun} can be approximated by a power law Phi (L) ~= L^{-2.35} Mpc^{-3} mag^{-1}. In the local Universe z < 0.1, the space density of ULIGs appears to be comparable to or slightly larger than that of optically selected QSOs at comparable bolometric luminosities. A maximum likelihood test suggests strong evolution for our sample; assuming density evolution proportional to (1+z)^{alpha} we find alpha = 7.6+/-3.2. Examination of the two-point correlation function shows a barely significant level of clustering, xi (r) = 1.6 +/- 1.2, on size scales r ~= 22 h^{-1} Mpc.Comment: 18 pages of text, 10 pages of figures 1 to 6, 6 pages of tables 1 to 3, ApJS accepte

    Faunal studies of the type Chesteran, Upper Mississippian of southwestern Illinois

    Get PDF
    48 p., 7 pl., 4 fig.http://paleo.ku.edu/contributions.htm

    Band structures of rare gas solids within the GW approximation

    Full text link
    Band structures for solid rare gases (Ne, Ar) have been calculated using the GW approximation. All electron and pseudopotential ab initio calculations were performed using Gaussian orbital basis sets and the dependence of particle-hole gaps and electron affinities on basis set and treatment of core electrons is investigated. All electron GW calculations have a smaller particle-hole gap than pseudopotential GW calculations by up to 0.2 eV. Quasiparticle electron and hole excitation energies, valence band widths and electron affinities are generally in very good agreement with those derived from optical absorption and photoemission measurements.Comment: 7 pages 1 figur

    Pattern languages in HCI: A critical review

    Get PDF
    This article presents a critical review of patterns and pattern languages in human-computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for developing and communicating information and knowledge to support good design. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to interaction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI
    corecore