84,059 research outputs found

    Conditional Spectrum-Based Ground Motion Selection. Part II: Intensity-Based Assessments and Evaluation of Alternative Target Spectra

    Get PDF
    In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk-based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20-story reinforced concrete frame structure. Here, the methodology is repeated for intensity-based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity-based and risk-based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity-based assessment. When used for intensity-based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk-based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity-based seismic assessments using the CS in future building codes and the risk-based seismic assessments typically used in performance-based earthquake engineering applications

    Conditional Spectrum-Based Ground Motion Selection. Part I: Hazard Consistency for Risk-Based Assessments

    Get PDF
    The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk-based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20-story reinforced concrete frame structure. It is shown here that risk-based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS-based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously

    A large-scale one-way quantum computer in an array of coupled cavities

    Full text link
    We propose an efficient method to realize a large-scale one-way quantum computer in a two-dimensional (2D) array of coupled cavities, based on coherent displacements of an arbitrary state of cavity fields in a closed phase space. Due to the nontrivial geometric phase shifts accumulating only between the qubits in nearest-neighbor cavities, a large-scale 2D cluster state can be created within a short time. We discuss the feasibility of our method for scale solid-state quantum computationComment: 5 pages, 3 figure

    Remark on approximation in the calculation of the primordial spectrum generated during inflation

    Get PDF
    We re-examine approximations in the analytical calculation of the primordial spectrum of cosmological perturbation produced during inflation. Taking two inflation models (chaotic inflation and natural inflation) as examples, we numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR

    First-principles Calculations of Engineered Surface Spin Structures

    Full text link
    The engineered spin structures recently built and measured in scanning tunneling microscope experiments are calculated using density functional theory. By determining the precise local structure around the surface impurities, we find the Mn atoms can form molecular structures with the binding surface, behaving like surface molecular magnets. The spin structures are confirmed to be antiferromagnetic, and the exchange couplings are calculated within 8% of the experimental values simply by collinear-spin GGA+U calculations. We can also explain why the exchange couplings significantly change with different impurity binding sites from the determined local structure. The bond polarity is studied by calculating the atomic charges with and without the Mn adatoms

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe

    Get PDF
    There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is strongly self-interacting, then the conflicts disappear. However, the assumption of strong self-interaction would rule out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs), such as the neutralino. In this paper we propose a mechanism of non-thermal production of WIMPs and study its implications on the power spectrum. We find that the non-vanishing velocity of the WIMPs suppresses the power spectrum on small scales compared to what it obtained in the conventional CDM model. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
    • …
    corecore