248 research outputs found

    Mass Spectrometry on Future Mars Landers

    Get PDF
    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur

    Magnetization and dynamics of reentrant ferrimagnetic spin-glass [MnTPP]::+[TCNE].-.2PhMe

    Get PDF
    Journal ArticleWe present direct current (dc) magnetization M(T,H) and alternating current (ac) susceptibility Xac(T,H,f) data for the quasi-one-dimensional molecule-based ferrimagnet [MnTPP]::+[TCNE].-.•2PhMe (TPP=meso-tetraphenylporphyrinato, TCNE=tetracyanoethylene). Static scaling of the real part X' of the ac susceptibility and data collapse of M(T,H) over a limited reduced temperature range above Tc=13 K lead to the critical exponents y=1.6, B=0.5, and 8=4.2. Below Tc , Xac depends sensitively on frequency and exhibits a striking double-peak structure similar to that found in reentrant spin glasses. Possible models for the frequency dependence of the peaks observed in Xac are discussed

    Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies

    Get PDF
    A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies

    Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry

    Get PDF
    The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets [1]. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these twin planets. It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more recent development, its relationship to the resurfacing of the planets enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus past as well as whether Earth could become more Venus-like in the future

    A Miniature Laser Desorption/Ionization Time-of-Flight Mass Spectrometer for in Situ Analysis of Mars Surface Composition and Identification of Hazard in Advance of Future Manned Exploration

    Get PDF
    Future landed missions to Mars will be guided by two strategic directions: (1) sample return to Earth, for comprehensive compositional analyses, as recommended by the 2011 NRC Planetary Decadal Survey; and (2) preparation for human exploration in the 2030s and beyond, as laid out by US space policy. The resultant mission architecture will likely require high-fidelity in situ chemical/organic sample analyses within an extremely constrained resource envelope. Both science goals (e.g., MEPAG Goal 1, return sample selection, etc.) as well as identification of any potential toxic and biological hazards to humans, must be addressed. Over the past several years of instrument development, we have found that the adaptable, compact, and highly capable technique of laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) has significant potential to contribute substantially to these dual objectives. This concept thus addresses Challenge Area 1: instrumentation and Investigation Approaches

    Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology

    Get PDF
    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science

    Observation of an unusual field dependent slow magnetic relaxation and two distinct transitions in a family of new complexes

    Full text link
    An unusual field dependent slow magnetic relaxation and two distinct transitions were observed in a family of new rare earth-transition metal complexes, [Ln (bipy) (H2_{2}O)4_{4} M(CN)6_{6}] â‹…\cdot 1.5 (bipy) â‹… \cdot 4H2_{2}O (bipy = 2,2'-bipyridine; Ln = Gd3+^{3+},Y3+^{3+}; M = Fe3+ ^{3+}, Co3+^{3+}). The novel magnetic relaxation, which is quite different from those in normal spin glasses and superparamagnets but very resembles qualitatively those in single-molecule magnet Mn12_{12}-Ac even if they possess different structures, might be attributed to the presence of frustration that is incrementally unveiled by the external magnetic field. The two distinct transitions in [GdFe] were presumed from DC and AC susceptibility as well as heat capacity measurements.Comment: Revtex, 6 figure

    In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    Get PDF
    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds

    The Search for Ammonia in Martian Soils with Curiosity's SAM Instrument

    Get PDF
    Nitrogen is the second or third most abundant constituent of the Martian atmosphere [1,2]. It is a bioessential element, a component of all amino acids and nucleic acids that make up proteins, DNA and RNA, so assessing its availability is a key part of Curiosity's mission to characterize Martian habitability. In oxidizing desert environments it is found in nitrate salts that co-occur with perchlorates [e.g., 3], inferred to be widespread in Mars soils [4-6]. A Mars nitrogen cycle has been proposed [7], yet prior missions have not constrained the state of surface N. Here we explore Curiosity's ability to detect N compounds using data from the rover's first solid sample. Companion abstracts describe evidence for nitrates [8] and for nitriles (C(triple bond)N) [9]; we focus here on nonnitrile, reduced-N compounds as inferred from bonded N-H. The simplest such compound is ammonia (NH3), found in many carbonaceous chondrite meteorites in NH4(+) salts and organic compounds [e.g., 10]
    • …
    corecore