34,816 research outputs found

    Hingeless helicopter rotor with improved stability

    Get PDF
    Improved stability was provided in a hingeless helicopter rotor by inclining the principal elastic flexural axes and coupling pitching of the rotor blade with the lead-lag bending of the blade. The primary elastic flex axes were inclined by constructing the blade of materials that display non-uniform stiffness, and the specification described various cross section distributions and the resulting inclined flex axes. Arrangements for varying the pitch of the rotor blade in a predetermined relationship with lead-lag bending of the blade, i.e., bending of the blade in a plane parallel to its plane of rotation were constructed

    New design of hingeless helicopter rotor improves stability

    Get PDF
    Cantilever blades are attached directly to rotor hub, thereby substantially reducing cost and complexity and increasing reliability of helicopter rotor. Combination of structural flap-lag coupling and pitch-lag coupling provides damping of 6 to 10%, depending on magnitude of coupling parameters

    Local transient rheological behavior of concentrated suspensions

    Get PDF
    This paper reports experiments on the shear transient response of concentrated non-Brownian suspensions. The shear viscosity of the suspensions is measured using a wide-gap Couette rheometer equipped with a Particle Image Velocimetry (PIV) device that allows measuring the velocity field. The suspensions made of PMMA particles (31μ\mum in diameter) suspended in a Newtonian index- and density-matched liquid are transparent enough to allow an accurate measurement of the local velocity for particle concentrations as high as 50%. In the wide-gap Couette cell, the shear induced particle migration is evidenced by the measurement of the time evolution of the flow profile. A peculiar radial zone in the gap is identified where the viscosity remains constant. At this special location, the local particle volume fraction is taken to be the mean particle concentration. The local shear transient response of the suspensions when the shear flow is reversed is measured at this point where the particle volume fraction is well defined. The local rheological measurements presented here confirm the macroscopic measurements of Gadala-Maria and Acrivos (1980). After shear reversal, the viscosity undergoes a step-like reduction, decreases slower and passes through a minimum before increasing again to reach a plateau. Upon varying the particle concentration, we have been able to show that the minimum and the plateau viscosities do not obey the same scaling law with respect to the particle volume fraction. These experimental results are consistent with the scaling predicted by Mills and Snabre (2009) and with the results of numerical simulation performed on random suspensions [Sierou and Brady (2001)]. The minimum seems to be associated with the viscosity of an isotropic suspension, or at least of a suspension whose particles do not interact through non-hydrodynamic forces, while the plateau value would correspond to the viscosity of a suspension structured by the shear where the non-hydrodynamic forces play a crucial role

    Climate change and the selective signature of the Late Ordovician mass extinction

    Get PDF
    Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia

    Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Get PDF
    Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm) can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths

    Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference

    Full text link
    This paper presents a general stochastic model developed for a class of cooperative wireless relay networks, in which imperfect knowledge of the channel state information at the destination node is assumed. The framework incorporates multiple relay nodes operating under general known non-linear processing functions. When a non-linear relay function is considered, the likelihood function is generally intractable resulting in the maximum likelihood and the maximum a posteriori detectors not admitting closed form solutions. We illustrate our methodology to overcome this intractability under the example of a popular optimal non-linear relay function choice and demonstrate how our algorithms are capable of solving the previously intractable detection problem. Overcoming this intractability involves development of specialised Bayesian models. We develop three novel algorithms to perform detection for this Bayesian model, these include a Markov chain Monte Carlo Approximate Bayesian Computation (MCMC-ABC) approach; an Auxiliary Variable MCMC (MCMC-AV) approach; and a Suboptimal Exhaustive Search Zero Forcing (SES-ZF) approach. Finally, numerical examples comparing the symbol error rate (SER) performance versus signal to noise ratio (SNR) of the three detection algorithms are studied in simulated examples
    corecore