887 research outputs found

    Energy exchanges in a damped Langevin-like system with two thermal baths and an athermal reservoir

    Full text link
    We study the properties of energy transfers in a Langevin-like model which describes an inertial particle in a one-dimensional harmonic potential and subjected to two heat baths and one athermal environment. The thermal noises are white and Gaussian, and the temperatures of heat reservoirs are different. The athermal medium act through an external non-Gaussian noise of Poisson type. We discuss the long-time behavior of first cumulants of time-integrated power due to the athermal reservoir. The averages and covariances of heat exchanged with thermal baths are also evaluated for stationary states. The properties of these cumulants are investigated in terms of the characteristics of external noise.Comment: 23 pages, 7 figure

    The Ferromagnetic Potts model under an external magnetic field: an exact renormalization group approach

    Full text link
    The q-state ferromagnetic Potts model under a non-zero magnetic field coupled with the 0^th Potts state was investigated by an exact real-space renormalization group approach. The model was defined on a family of diamond hierarchical lattices of several fractal dimensions d_F. On these lattices, the renormalization group transformations became exact for such a model when a correlation coupling that singles out the 0^th Potts state was included in the Hamiltonian. The rich criticality presented by the model with q=3 and d_F=2 was fully analyzed. Apart from the Potts criticality for the zero field, an Ising-like phase transition was found whenever the system was submitted to a strong reverse magnetic field. Unusual characteristics such as cusps and dimensional reduction were observed on the critical surface.Comment: 8 pages, 6 figures. Accepted to be published in Phys. Rev B (2006

    Lamellae Stability in Confined Systems with Gravity

    Full text link
    The microphase separation of a diblock copolymer melt confined by hard walls and in the presence of a gravitational field is simulated by means of a cell dynamical system model. It is found that the presence of hard walls normal to the gravitational field are key ingredients to the formation of well ordered lamellae in BCP melts. To this effect the currents in the directions normal and parallel to the field are calculated along the interface of a lamellar domain, showing that the formation of lamellae parallel to the hard boundaries and normal to the field correspond to the stable configuration. Also, it is found thet the field increases the interface width.Comment: 4 pages, 2 figures, submitted to Physical Review

    Exact Nonequilibrium Work Generating Function for a Small Classical System

    Full text link
    We obtain the exact nonequilibrium work generating function (NEWGF), for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite time interval. The Jarzynski equality (JE), obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work

    Scaling properties of granular materials

    Full text link
    Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc., are scaled by a constant. The result leads to a method to scale down experiments to lab-size.Comment: 4 pages, 2 figure

    Critical scaling in standard biased random walks

    Full text link
    The spatial coverage produced by a single discrete-time random walk, with asymmetric jump probability p≠1/2p\neq 1/2 and non-uniform steps, moving on an infinite one-dimensional lattice is investigated. Analytical calculations are complemented with Monte Carlo simulations. We show that, for appropriate step sizes, the model displays a critical phenomenon, at p=pcp=p_c. Its scaling properties as well as the main features of the fragmented coverage occurring in the vicinity of the critical point are shown. In particular, in the limit p→pcp\to p_c, the distribution of fragment lengths is scale-free, with nontrivial exponents. Moreover, the spatial distribution of cracks (unvisited sites) defines a fractal set over the spanned interval. Thus, from the perspective of the covered territory, a very rich critical phenomenology is revealed in a simple one-dimensional standard model.Comment: 4 pages, 4 figure

    On exact time-averages of a massive Poisson particle

    Full text link
    In this work we study, under the Stratonovich definition, the problem of the damped oscillatory massive particle subject to a heterogeneous Poisson noise characterised by a rate of events, \lambda (t), and a magnitude, \Phi, following an exponential distribution. We tackle the problem by performing exact time-averages over the noise in a similar way to previous works analysing the problem of the Brownian particle. From this procedure we obtain the long-term equilibrium distributions of position and velocity as well as analytical asymptotic expressions for the injection and dissipation of energy terms. Considerations on the emergence of stochastic resonance in this type of system are also set forth.Comment: 21 pages, 5 figures. To be published in Journal of Statistical Mechanics: Theory and Experimen
    • …
    corecore