32 research outputs found

    Reducing Uncertainties in a Wind-Tunnel Experiment using Bayesian Updating

    Full text link
    We perform a fully stochastic analysis of an experiment in aerodynamics. Given estimated uncertainties on the principle input parameters of the experiment, including uncertainties on the shape of the model, we apply uncertainty propagation methods to a suitable CFD model of the experimental setup. Thereby we predict the stochastic response of the measurements due to the experimental uncertainties. To reduce the variance of these uncertainties a Bayesian updating technique is employed in which the uncertain parameters are treated as calibration parameters, with priors taken as the original uncertainty estimates. Imprecise measurements of aerodynamic forces are used as observational data. Motivation and a concrete application come from a wind-tunnel experiment whose parameters and model geometry have substantial uncertainty. In this case the uncertainty was a consequence of a poorly constructed model in the pre-measurement phase. These methodological uncertainties lead to substantial uncertainties in the measurement of forces. Imprecise geometry measurements from multiple sources are used to create an improved stochastic model of the geometry. Calibration against lift and moment data then gives us estimates of the remaining parameters. The effectiveness of the procedure is demonstrated by prediction of drag with uncertainty

    Spinal muscular atrophy within Amish and Mennonite populations: Ancestral haplotypes and natural history.

    No full text
    We correlate chromosome 5 haplotypes and SMN2 copy number with disease expression in 42 Mennonite and 14 Amish patients with spinal muscular atrophy (SMA). A single haplotype (A1) with 1 copy of SMN2 segregated among all Amish patients. SMN1 deletions segregated on four different Mennonite haplotypes that carried 1 (M1a, M1b, M1c) or 2 (M2) copies of SMN2. DNA microsatellite and microarray data revealed structural similarities among A1, M1a, M1b, and M2. Clinical data were parsed according to both SMN1 genotype and SMN2 copy number (2 copies, n = 44; 3 copies, n = 9; or 4 copies, n = 3). No infant with 2 copies of SMN2 sat unassisted. In contrast, all 9 Mennonites with the M1a/M2 genotype (3 copies of SMN2) sat during infancy at a median age of 7 months, and 5 (56%) walked and dressed independently at median ages of 18 and 36 months, respectively. All are alive at a median age of 11 (range 2-31) years without ventilatory support. Among 13 Amish and 26 Mennonite patients with 2 copies of SMN2 who did not receive feeding or ventilatory support, A1/A1 as compared to M1a/M1a genotype was associated with earlier clinical onset (p = 0.0040) and shorter lifespan (median survival 3.9 versus 5.7 months, p = 0.0314). These phenotypic differences were not explained by variation in SMN1 deletion size or SMN2 coding sequence, which were conserved across haplotypes. Distinctive features of SMA within Plain communities provide a population-specific framework to study variations of disease expression and the impact of disease-modifying therapies administered early in life

    Differential binding of chemokines CXCL1, CXCL2 and CCL2 to mouse glomerular endothelial cells reveals specificity for distinct heparan sulfate domains.

    No full text
    INTRODUCTION:Proliferative glomerulonephritis manifests in a range of renal diseases and is characterized by the influx of inflammatory cells into the glomerulus. Heparan sulfate (HS) is an important (co-)receptor for binding of chemokines, cytokines and leukocytes to the endothelial glycocalyx, a thick glycan layer that covers the inside of blood vessels. During glomerulonephritis, HS in the glomerular endothelial glycocalyx plays a central role in chemokine presentation and oligomerization, and in binding of selectins and integrins expressed by leukocytes. We hypothesize that distinct endothelial HS domains determine the binding of different chemokines. In this study we evaluated the interaction of three pro-inflammatory chemokines (CXCL1, CXCL2 and CCL2) with mouse glomerular endothelial cells (mGEnC-1) in ELISA in competition with different HS preparations and anti-HS single chain variable fragment (scFv) antibodies specific for distinct HS domains. RESULTS:HS appeared to be the primary ligand mediating chemokine binding to the glomerular endothelial glycocalyx in vitro. We found differential affinities of CXCL1, CXCL2 and CCL2 for HS in isolated mGEnC-1 glycocalyx, heparan sulfate from bovine kidney or low molecular weight heparin in competition ELISAs using mGEnC-1 as a substrate, indicating that chemokine binding is affected by the domain structure of the different HS preparations. Blocking of specific HS domains with anti-HS scFv antibodies revealed a domain-specific interaction of the tested chemokines to HS on mGEnC-1. Furthermore, chemokines did not compete for the same binding sites on mGEnC-1. CONCLUSION:CXCL1, CXCL2 and CCL2 binding to the glomerular endothelial glycocalyx appears differentially mediated by specific HS domains. Our findings may therefore contribute to the development of HS-based treatments for renal and possibly other inflammatory diseases specifically targeting chemokine-endothelial cell interactions

    Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition

    No full text
    Objective— An excessive release and impaired degradation of neutrophil extracellular traps (NETs) leads to the continuous exposure of NETs to the endothelium in a variety of hematologic and autoimmune disorders, including lupus nephritis. This study aims to unravel the mechanisms through which NETs jeopardize vascular integrity. Approach and Results— Microvascular and macrovascular endothelial cells were exposed to NETs, and subsequent effects on endothelial integrity and function were determined in vitro and in vivo. We found that endothelial cells have a limited capacity to internalize NETs via the receptor for advanced glycation endproducts. An overflow of the phagocytic capacity of endothelial cells for NETs resulted in the persistent extracellular presence of NETs, which rapidly altered endothelial cell–cell contacts and induced vascular leakage and transendothelial albumin passage through elastase-mediated proteolysis of the intercellular junction protein VE-cadherin. Furthermore, NET-associated elastase promoted the nuclear translocation of junctional β-catenin and induced endothelial-to-mesenchymal transition in cultured endothelial cells. In vivo, NETs could be identified in kidney samples of diseased MRL/lpr mice and patients with lupus nephritis, in whom the glomerular presence of NETs correlated with the severity of proteinuria and with glomerular endothelial-to-mesenchymal transition. Conclusions— These results indicate that an excess of NETs exceeds the phagocytic capacity of endothelial cells for NETs and promotes vascular leakage and endothelial-to-mesenchymal transition through the degradation of VE-cadherin and the subsequent activation of β-catenin signaling. Our data designate NET-associated elastase as a potential therapeutic target in the prevention of endothelial alterations in diseases characterized by aberrant NET release. </jats:sec
    corecore