4,940 research outputs found

    NMR Knight shifts and linewidths in the Ni‐Pd‐P and Ni‐Pt‐P metallic glasses: Composition and temperature dependences

    Get PDF
    NMR Knight shift and linewidth measurements are reported for the ^(31)P nuclei in the metallic glasses (Ni_(0.50)Pd_(0.50))100−_xP_x (where x=16 to 26.5) and (Ni_yPd_(1−y))_(80)P_(20) (where y=0.20 to 0.80), and both the ^(31)P and 195Pt nuclei in the metallic glass (Ni_yPt_(1−y))_(75)P_(25) (where y=0.20 to 0.68). The results are discussed in terms of the amorphous structure, electronic structure, and stability of transition metal + metalloid metallic glasses

    High-temperature earth-storable propellant acoustic cavity technology

    Get PDF
    Design criteria, methods and data, were developed to permit effective design of acoustic cavities for use in regeneratively cooled OME-type engines. This information was developed experimentally from two series of motor firings with high-temperature fuel during which the engine stability was evaluated under various conditions and with various cavity configurations. Supplementary analyses and acoustic model testing were used to aid cavity design and interpretation of results. Results from this program clearly indicate that dynamic stability in regeneratively cooled OME-type engines can be ensured through the use of acoustic cavities. Moreover, multiple modes of instability were successfully suppressed with the cavity

    Local Structure and It's Effect on The Ferromagnetic Properties of La0.5_{0.5}Sr0.5_{0.5}CoO3_3 thin films}

    Full text link
    We have used high-resolution Extended X-ray Absorption Fine-Structure and diffraction techniques to measure the local structure of strained La0.5_{0.5}Sr0.5_{0.5}CoO3_3 films under compression and tension. The lattice mismatch strain in these compounds affects both the bond lengths and the bond angles, though the larger effect on the bandwidth is due to the bond length changes. The popular double exchange model for ferromagnetism in these compounds provides a correct qualitative description of the changes in Curie temperature TCT_C, but quantitatively underestimates the changes. A microscopic model for ferromagnetism that provides a much stronger dependence on the structural distortions is needed.Comment: 4 pages, 4 figure

    The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure

    Full text link
    The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with highly ordered polycrystalline films and a coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4 and 15.4 A.The dependence of the c-axis correlation length and the phase fraction on the film thickness and printing temperature were measured. A transition from the 15.4 A phase towards 14.4 A phase was also observed with increasing film thickness. An increase in the c-axis correlation length of approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si substrates. The transfer printing method is shown to be an attractive for the fabrication of pentacene thin-film transistors on flexible substrates partly because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure

    A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146

    Get PDF
    We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_{IR}=4e11 L_sun) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Z3146 (z=0.29). The spectrum shows strong aromatic emission features, indicating that the dominant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H2 gas mass (~1e10 M_sun) are 6 times larger than those of NGC 6240, the most H2-luminous galaxy at z <~ 0.1. Together with the large amount of cold H2 detected previously (~1e11 M_sun), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core.Comment: 13 pages, 3 figures, 1 table; Accepted for publication in ApJ

    High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    Full text link
    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, are seen to dominate the accuracy of p and theta. However, the updated coefficients do allow imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This work enables a new caliber of science with HST.Comment: 13 pages, 9 figures, PASP accepte

    High Accuracy Imaging Polarimetry with NICMOS

    Get PDF
    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.Comment: 5 pages, 2 figures. Contributed talk, "Astronomical Polarimetry 2008. Science from Small to Large Telescopes" La Malbaie, Quebec, Canada, 200
    corecore