15,433 research outputs found

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Get PDF
    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event

    Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase

    Get PDF
    Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1¿/¿ chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1¿/¿ cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3¿/¿ DT40 cells. Rather, we observed an increased number of replication fibers in Chk1¿/¿ cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1¿/¿ cells are associated with the accumulation of aberrant replication fork structure

    Shell Model Monte Carlo Investigation of Rare Earth Nuclei

    Get PDF
    We utilize the Shell Model Monte Carlo (SMMC) method to study the structure of rare earth nuclei. This work demonstrates the first systematic ``full oscillator shell plus intruder'' calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole hamiltonian are compared with mean field and SPA approximations in several Dysprosium isotopes from A=152-162, including the odd mass A=153. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data.Comment: 40 pages; 24 figures; 2 tables. Update includes correction of figure labe

    Mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    Full text link
    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory.Comment: version to be published in Fast Track Communication in Journal of Physics A:Math. Theo

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8
    corecore