34 research outputs found

    On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries

    Full text link
    A brief review is given of all the Hamiltonians and effective potentials calculated hitherto covering the post-Newtonian (pN) dynamics of a two body system. A method is presented to compare (conservative) reduced Hamiltonians with nonreduced potentials directly at least up to the next-to-leading-pN order.Comment: Conference proceedings for the 7th International Conference on Gravitation and Cosmology (ICGC2011), 4 page

    Inverse approach to Einstein's equations for fluids with vanishing anisotropic stress tensor

    Full text link
    We expand previous work on an inverse approach to Einstein Field Equations where we include fluids with energy flux and consider the vanishing of the anisotropic stress tensor. We consider the approach using warped product spacetimes of class B1B_1. Although restricted, these spacetimes include many exact solutions of interest to compact object studies and to cosmological models studies. The question explored here is as follows: given a spacetime metric, what fluid flow (timelike congruence), if any, could generate the spacetime via Einstein's equations. We calculate the flow from the condition of a vanishing anisotropic stress tensor and give results in terms of the metric functions in the three canonical types of coordinates. A condition for perfect fluid sources is also provided. The framework developed is algorithmic and suited for the study and validation of exact solutions using computer algebra systems. The framework can be applied to solutions in comoving and non-comoving frames of reference, and examples in different types of coordinates are worked out.Comment: 15 pages, matches version to appear in Phys.Rev.

    Motion and gravitational wave forms of eccentric compact binaries with orbital-angular-momentum-aligned spins under next-to-leading order in spin-orbit and leading order in spin(1)-spin(2) and spin-squared couplings

    Full text link
    A quasi-Keplerian parameterisation for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin orbit and 1PN spin-spin contributions, where the spins are counted of 0PN order.Comment: 26 pages, 1 figure, published in CQG. Current version: we removed a remark and clarified the derivation of the orbital element \e_ph

    Exact Solution for the Exterior Field of a Rotating Neutron Star

    Get PDF
    A four-parameter class of exact asymptotically flat solutions of the Einstein-Maxwell equations involving only rational functions is presented. It is able to describe the exterior field of a slowly or rapidly rotating neutron star with poloidal magnetic field.Comment: Accepted for publication in Phys. Rev. D as Rapid Communication. 8 pages, 2 eps figure

    Radiative falloff in Einstein-Straus spacetime

    Full text link
    The Einstein-Straus spacetime describes a nonrotating black hole immersed in a matter-dominated cosmology. It is constructed by scooping out a spherical ball of the dust and replacing it with a vacuum region containing a black hole of the same mass. The metric is smooth at the boundary, which is comoving with the rest of the universe. We study the evolution of a massless scalar field in the Einstein-Straus spacetime, with a special emphasis on its late-time behavior. This is done by numerically integrating the scalar wave equation in a double-null coordinate system that covers both portions (vacuum and dust) of the spacetime. We show that the field's evolution is governed mostly by the strong concentration of curvature near the black hole, and the discontinuity in the dust's mass density at the boundary; these give rise to a rather complex behavior at late times. Contrary to what it would do in an asymptotically-flat spacetime, the field does not decay in time according to an inverse power-law.Comment: ReVTeX, 12 pages, 14 figure

    An inverse approach to Einstein's equations for non-conducting fluids

    Full text link
    We show that a flow (timelike congruence) in any type B1B_{1} warped product spacetime is uniquely and algorithmically determined by the condition of zero flux. (Though restricted, these spaces include many cases of interest.) The flow is written out explicitly for canonical representations of the spacetimes. With the flow determined, we explore an inverse approach to Einstein's equations where a phenomenological fluid interpretation of a spacetime follows directly from the metric irrespective of the choice of coordinates. This approach is pursued for fluids with anisotropic pressure and shear viscosity. In certain degenerate cases this interpretation is shown to be generically not unique. The framework developed allows the study of exact solutions in any frame without transformations. We provide a number of examples, in various coordinates, including spacetimes with and without unique interpretations. The results and algorithmic procedure developed are implemented as a computer algebra program called GRSource.Comment: 9 pages revtex4. Final form to appear in Phys Rev

    Radiative falloff in Schwarzschild-de Sitter spacetime

    Get PDF
    We consider the time evolution of a scalar field propagating in Schwarzschild-de Sitter spacetime. At early times, the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far from the black hole has no influence on the evolution. In this early epoch, the field's initial outburst is followed by quasi-normal oscillations, and then by an inverse power-law decay. At intermediate times, the power-law behavior gives way to a faster, exponential decay. At late times, the field behaves as if it were in pure de Sitter spacetime; the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this late epoch, the field's behavior depends on the value of the curvature-coupling constant xi. If xi is less than a critical value 3/16, the field decays exponentially, with a decay constant that increases with increasing xi. If xi > 3/16, the field oscillates with a frequency that increases with increasing xi; the amplitude of the field still decays exponentially, but the decay constant is independent of xi.Comment: 10 pages, ReVTeX, 5 figures, references updated, and new section adde

    Mapping spacetimes with LISA: inspiral of a test-body in a `quasi-Kerr' field

    Get PDF
    The future LISA detector will constitute the prime instrument for high-precision gravitational wave observations.LISA is expected to provide information for the properties of spacetime in the vicinity of massive black holes which reside in galactic nuclei.Such black holes can capture stellar-mass compact objects, which afterwards slowly inspiral,radiating gravitational waves.The body's orbital motion and the associated waveform carry information about the spacetime metric of the massive black hole,and it is possible to extract this information and experimentally identify (or not!) a Kerr black hole.In this paper we lay the foundations for a practical `spacetime-mapping' framework. Our work is based on the assumption that the massive body is not necessarily a Kerr black hole, and that the vacuum exterior spacetime is stationary axisymmetric,described by a metric which deviates slightly from the Kerr metric. We first provide a simple recipe for building such a `quasi-Kerr' metric by adding to the Kerr metric the deviation in the value of the quadrupole moment. We then study geodesic motion in this metric,focusing on equatorial orbits. We proceed by computing `kludge' waveforms which we compare with their Kerr counterparts. We find that a modest deviation from the Kerr metric is sufficient for producing a significant mismatch between the waveforms, provided we fix the orbital parameters. This result suggests that an attempt to use Kerr waveform templates for studying EMRIs around a non-Kerr object might result in serious loss of signal-to-noise ratio and total number of detected events. The waveform comparisons also unveil a `confusion' problem, that is the possibility of matching a true non-Kerr waveform with a Kerr template of different orbital parameters.Comment: 19 pages, 6 figure

    Radiative falloff of a scalar field in a weakly curved spacetime without symmetries

    Full text link
    We consider a massless scalar field propagating in a weakly curved spacetime whose metric is a solution to the linearized Einstein field equations. The spacetime is assumed to be stationary and asymptotically flat, but no other symmetries are imposed -- the spacetime can rotate and deviate strongly from spherical symmetry. We prove that the late-time behavior of the scalar field is identical to what it would be in a spherically-symmetric spacetime: it decays in time according to an inverse power-law, with a power determined by the angular profile of the initial wave packet (Price falloff theorem). The field's late-time dynamics is insensitive to the nonspherical aspects of the metric, and it is governed entirely by the spacetime's total gravitational mass; other multipole moments, and in particular the spacetime's total angular momentum, do not enter in the description of the field's late-time behavior. This extended formulation of Price's falloff theorem appears to be at odds with previous studies of radiative decay in the spacetime of a Kerr black hole. We show, however, that the contradiction is only apparent, and that it is largely an artifact of the Boyer-Lindquist coordinates adopted in these studies.Comment: 17 pages, RevTeX

    Nodal and Periastron Precession of Inclined Orbits in the Field of a Rapidly Rotating Neutron Star

    Get PDF
    We derive a formula for the nodal precession frequency and the Keplerian period of a particle at an arbitrarily inclined orbit (with a minimum latitudinal angle reached at the orbit) in the post-Newtonian approximation in the external field of an oblate rotating neutron star (NS). We also derive formulas for the nodal precession and periastron rotation frequencies of slightly inclined low-eccentricity orbits in the field of a rapidly rotating NS in the form of asymptotic expansions whose first terms are given by the Okazaki--Kato formulas. The NS gravitational field is described by the exact solution of the Einstein equation that includes the NS quadrupole moment induced by rapid rotation. Convenient asymptotic formulas are given for the metric coefficients of the corresponding space-time in the form of Kerr metric perturbations in Boyer--Lindquist coordinates.Comment: 12 page
    corecore