828 research outputs found

    The Halo Formation Rate and its link to the Global Star Formation Rate

    Get PDF
    The star formation history of the universe shows strong evolution with cosmological epoch. Although we know mergers between galaxies can cause luminous bursts of star formation, the relative importance of such mergers to the global star formation rate (SFR) is unknown. We present a simple analytic formula for the rate at which halos merge to form higher-mass systems, derived from Press-Schechter theory and confirmed by numerical simulations (for high halo masses). A comparison of the evolution in halo formation rate with the observed evolution in the global SFR indicates that the latter is largely driven by halo mergers at z>1. Recent numerical simulations by Kolatt et al. (1999) and Knebe & Muller (1999) show how merging systems are strongly biased tracers of mass fluctuations, thereby explaining the strong clustering observed for Lyman-break galaxies without any need to assume that Lyman-break galaxies are associated only with the most massive systems at z~3.Comment: 4 pages, 2 figures. To appear in `The Hy-redshift universe: Galaxy formation and evolution at high redshift' eds. A.J. Bunker and W.J.M. van Breuge

    Measuring the cosmological constant with redshift surveys

    Get PDF
    It has been proposed that the cosmological constant Λ\Lambda might be measured from geometric effects on large-scale structure. A positive vacuum density leads to correlation-function contours which are squashed in the radial direction when calculated assuming a matter-dominated model. We show that this effect will be somewhat harder to detect than previous calculations have suggested: the squashing factor is likely to be <1.3<1.3, given realistic constraints on the matter contribution to Ω\Omega. Moreover, the geometrical distortion risks being confused with the redshift-space distortions caused by the peculiar velocities associated with the growth of galaxy clustering. These depend on the density and bias parameters via the combination β≡Ω0.6/b\beta\equiv \Omega^{0.6}/b, and we show that the main practical effect of a geometrical flattening factor FF is to simulate gravitational instability with βeff≃0.5(F−1)\beta_{\rm eff}\simeq 0.5(F-1). Nevertheless, with datasets of sufficient size it is possible to distinguish the two effects; we discuss in detail how this should be done. New-generation redshift surveys of galaxies and quasars are potentially capable of detecting a non-zero vacuum density, if it exists at a cosmologically interesting level.Comment: MNRAS in press. 12 pages LaTeX including Postscript figures. Uses mn.sty and epsf.st

    Power Spectrum Analysis of the 2dF QSO Sample Revisited

    Full text link
    We revisit the power spectrum analysis of the complete sample of the two degree field (2dF) QSO redshift (2QZ) survey, as a complementary test of the work by Outram et al. (2003). A power spectrum consistent with that of the 2QZ group is obtained. Differently from their approach, fitting of the power spectrum is investigated incorporating the nonlinear effects, the geometric distortion and the light-cone effect. It is shown that the QSO power spectrum is consistent with the Λ\Lambda cold dark matter (CDM) model with the matter density parameter Ωm=0.2∼0.5\Omega_m=0.2\sim0.5. Our constraint on the density parameter is rather weaker than that of the 2QZ group. We also show that the constraint slightly depends on the equation of state parameter ww of the dark energy. The constraint on ww from the QSO power spectrum is demonstrated, though it is not very tight.Comment: 15 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Correlation Function in Deep Redshift Space as a Cosmological Probe

    Full text link
    Recent development of galaxy surveys enables us to investigate the deep universe of high redshift. We quantitatively present the physical information extractable from the observable correlation function in deep redshift space in a framework of the linear theory. The correlation function depends on the underlying power spectrum, velocity distortions, and the Alcock-Paczy\'nski (AP) effect. The underlying power spectrum is sensitive to the constituents of matters in the universe, the velocity distortions are sensitive to the galaxy bias as well as the amount of total matter, and the Alcock-Paczy\'nski effect is sensitive to the dark energy components. Measuring the dark energy by means of the baryonic feature in the correlation function is one of the most interesting applications. We show that the ``baryon ridge'' in the correlation function serves as a statistically circular object in the AP effect. In order to sufficiently constrain the dark energy components, the redshift range of the galaxy survey should be as broad as possible. The survey area on the sky should be smaller at deep redshifts than at shallow redshifts to keep the number density as dense as possible. We illustrate an optimal survey design that are useful in cosmology. Assuming future redshift surveys of z\simlt 3 which are within reach of the present-day technology, achievable error bounds on cosmological parameters are estimated by calculating the Fisher matrix. According to an illustrated design, the equation of state of dark energy can be constrained within ±5\pm 5% error assuming that the bias is unknown and marginalized over. Even when all the other cosmological parameters should be simultaneously determined, the error bound for the equation of state is up to ±10\pm 10%.Comment: 13 pages, 8 figures, ApJ in pres

    Using galaxy pairs as cosmological tracers

    Full text link
    The Alcock-Paczynski (AP) effect uses the fact that, when analyzed with the correct geometry, we should observe structure that is statistically isotropic in the Universe. For structure undergoing cosmological expansion with the background, this constrains the product of the Hubble parameter and the angular diameter distance. However, the expansion of the Universe is inhomogeneous and local curvature depends on density. We argue that this distorts the AP effect on small scales. After analyzing the dynamics of galaxy pairs in the Millennium simulation, we find an interplay between peculiar velocities, galaxy properties and local density that affects how pairs trace cosmological expansion. We find that only low mass, isolated galaxy pairs trace the average expansion with a minimum "correction" for peculiar velocities. Other pairs require larger, more cosmology and redshift dependent peculiar velocity corrections and, in the small-separation limit of being bound in a collapsed system, do not carry cosmological information.Comment: 15 pages, 14 figures, 1 tabl

    On the Search for Quasar Light Echoes

    Full text link
    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from quasars with B band luminosities L_B=3x10^45 ergs/s exist that could be found at 95% confidence, assuming a quasar lifetime of ~10^7 yr. Even a null result from such a search would have interesting implications for our understanding of quasar luminosities and lifetimes.Comment: 9 pages, 7 figures, ApJ in pres

    Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion

    Get PDF
    Baryon acoustic oscillations (BAOs) imprinted in the galaxy power spectrum can be used as a standard ruler to determine angular diameter distance and Hubble parameter at high redshift galaxies. Combining redshift distortion effect which apparently distorts the galaxy clustering pattern, we can also constrain the growth rate of large-scale structure formation. Usually, future forecast for constraining these parameters from galaxy redshift surveys has been made with a full 2D power spectrum characterized as function of wavenumber kk and directional cosine μ\mu between line-of-sight direction and wave vector, i.e., P(k,μ)P(k,\mu). Here, we apply the multipole expansion to the full 2D power spectrum, and discuss how much cosmological information can be extracted from the lower-multipole spectra, taking a proper account of the non-linear effects on gravitational clustering and redshift distortion. The Fisher matrix analysis reveals that compared to the analysis with full 2D spectrum, a partial information from the monopole and quadrupole spectra generally degrades the constraints by a factor of ∼1.3\sim1.3 for each parameter. The additional information from the hexadecapole spectrum helps to improve the constraints, which lead to an almost comparable result expected from the full 2D spectrum.Comment: 12 pages, 6 figure
    • …
    corecore