70 research outputs found

    Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e

    Get PDF
    The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction

    Probing the Catalytic Roles of Arg548 and Gln552 in the Carboxyl Transferase Domain of the \u3cem\u3eRhizobium etli\u3c/em\u3e Pyruvate Carboxylase by Site-directed Mutagenesis

    Get PDF
    The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase

    Key challenges in simulated patient programs: An international comparative case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature on simulated or standardized patient (SP) methodology is expanding. However, at the level of the program, there are several gaps in the literature. We seek to fill this gap through documenting experiences from four programs in Australia, Canada, Switzerland and the United Kingdom. We focused on challenges in SP methodology, faculty, organisational structure and quality assurance.</p> <p>Methods</p> <p>We used a multiple case study method with cross-case synthesis. Over eighteen months during a series of informal and formal interactions (focused meetings and conference presentations) we documented key characteristics of programs and drew on secondary document sources.</p> <p>Results</p> <p>Although programs shared challenges in SP methodology they also experienced differences. Key challenges common to programs included systematic quality assurance and the opportunity for research. There were differences in the terminology used to describe SPs, in their recruitment and training. Other differences reflected local conditions and demands in organisational structure, funding relationships with the host institution and national trends, especially in assessments.</p> <p>Conclusion</p> <p>This international case study reveals similarities and differences in SP methodology. Programs were highly contextualised and have emerged in response to local, institutional, profession/discipline and national conditions. Broader trends in healthcare education have also influenced development. Each of the programs experienced challenges in the same themes but the nature of the challenges often varied widely.</p

    Enzymatic Mechanisms of Phosphate and Sulfate Transfer

    No full text
    Many biological molecules contain phosphate or sulfate, and the enzymatic reactions that transfer these groups play important roles in metabolism. DNA and RNA are phosphate diesters, while many intermediates in metabolism exist as phosphate monoesters. Phosphorylation of proteins is an important control mechanism. While triesters are not naturally occurring biological molecules, enzymes have evolved to hydrolyze these man-made toxic compounds. ATP and similar molecules contain phosphoanhydrides, which liberate considerable free energy upon their hydrolysis and, thus, provide the energy needed for muscle movement and the biosynthesis of other bonds. Esterification with sulfate serves to solubilize molecules to aid in their excretion, and sulfate monoesters are found among many classes of natural products, possibly aiding in transport. In this review we will briefly present what is known about nonenzymatic phosphate and sulfate transfers, and then we will discuss the kinetic and chemical mechanisms of enzymes that catalyze similar transfers

    15

    No full text

    Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from rhizobium etli

    No full text
    The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO(2) to form oxaloacetate and complete the reaction.Tonya N. Zeczycki, Martin St. Maurice, Sarawut Jitrapakdee, John C. Wallace, Paul V. Attwood and W. Wallace Clelan

    Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme

    No full text
    © 2007 American Association for the Advancement of Science. All Rights Reserved.Biotin-dependent multifunctional enzymes carry out metabolically important carboxyl group transfer reactions and are potential targets for the treatment of obesity and type 2 diabetes. These enzymes use a tethered biotin cofactor to carry an activated carboxyl group between distantly spaced active sites. The mechanism of this transfer has remained poorly understood. Here we report the complete structure of pyruvate carboxylase at 2.0 angstroms resolution, which shows its domain arrangement. The structure, when combined with mutagenic analysis, shows that intermediate transfer occurs between active sites on separate polypeptide chains. In addition, domain rearrangements associated with activator binding decrease the distance between active-site pairs, providing a mechanism for allosteric activation. This description provides insight into the function of biotin-dependent enzymes and presents a new paradigm for multifunctional enzyme catalysis.Martin St. Maurice, Laurie Reinhardt, Kathy H. Surinya, Paul V. Attwood, John C. Wallace, W. Wallace Cleland, Ivan Raymen
    • …
    corecore