514 research outputs found

    Field-aligned current associated with low-latitude plasma blobs as observed by the CHAMP satellite

    Get PDF
    Here we give two examples of low-latitude plasma blobs accompanied by linearly polarized perpendicular magnetic deflections which imply that associated field-aligned currents (FACs) have a 2-D sheet structure located at the blob walls. The estimated FAC density is of the order of 0.1 μA/m<sup>2</sup>. The direction of magnetic deflections points westward of the magnetic meridian and there is a linear correlation between perpendicular and parallel variations. All these properties are similar to those of equatorial plasma bubbles (EPBs). According to CHAMP observations from August 2000 to July 2004, blobs show except for these two good examples no clear signatures of 2-D FAC sheets at the walls. Generally, perpendicular magnetic deflections inside blobs are weaker than inside EPBs on average. Our results are consistent with existing theories: if a blob exists, (1) a significant part of EPB FAC will be closed through it, exhibiting similar perpendicular magnetic deflection inside EPBs and blobs, (2) the FAC closure through blobs leads to smaller perpendicular magnetic deflection at its poleward/downward side, and (3) superposition of different FAC elements might result in a complex magnetic signature around blobs

    Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution

    Full text link
    Given a set of images containing objects from the same category, the task of image co-localization is to identify and localize each instance. This paper shows that this problem can be solved by a simple but intriguing idea, that is, a common object detector can be learnt by making its detection confidence scores distributed like those of a strongly supervised detector. More specifically, we observe that given a set of object proposals extracted from an image that contains the object of interest, an accurate strongly supervised object detector should give high scores to only a small minority of proposals, and low scores to most of them. Thus, we devise an entropy-based objective function to enforce the above property when learning the common object detector. Once the detector is learnt, we resort to a segmentation approach to refine the localization. We show that despite its simplicity, our approach outperforms state-of-the-art methods.Comment: Accepted to Proc. European Conf. Computer Vision 201

    Ladder approximation to spin velocities in quantum wires

    Get PDF
    The spin sector of charge-spin separated single mode quantum wires is studied, accounting for realistic microscopic electron-electron interactions. We utilize the ladder approximation (LA) to the interaction vertex and exploit thermodynamic relations to obtain spin velocities. Down to not too small carrier densities our results compare well with existing quantum Monte-Carlo (QMC) data. Analyzing second order diagrams we identify logarithmically divergent contributions as crucial which the LA includes but which are missed, for example, by the self-consistent Hartree-Fock approximation. Contrary to other approximations the LA yields a non-trivial spin conductance. Its considerably smaller computational effort compared to numerically exact methods, such as the QMC method, enables us to study overall dependences on interaction parameters. We identify the short distance part of the interaction to govern spin sector properties.Comment: 6 pages, 6 figures, to appear in Physical Review

    Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction

    Get PDF
    Transition rate measurements are reported for the first and the second 2+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale Shell Model calculations applying the recently developed GXPF1A interactions. Theoretical analysis suggests that 64Ge is a collective gamma-soft anharmonic vibrator. The measurement was done using the Recoil Distance Method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpert∌n1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ→1/2K_{\rho}\to 1/2 when n→0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n→0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    Excited-state transition-rate measurements in C-18

    Get PDF
    Excited states in C-18 were populated by the one-proton knockout reaction of an intermediate energy radioactive N-19 beam. The lifetime of the first 2(+) state was measured with the Koln/NSCL plunger via the recoil distance method to be tau (2(1)(+)) = 22.4 +/- 0.9(stat)(-2.2)(+3.3)(syst) ps, which corresponds to a reduced quadrupole transition strength of B(E2; 2(1)(+) -> 0(1)(+)) = 3.64(-0.14)(+ 0.15)(stat)(-0.47)(+0.40)(syst) e(2)fm(4). In addition, an upper limit on the lifetime of a higher-lying state feeding the 2(1)(+) state was measured to be tau < 4.6 ps. The results are compared to large-scale ab initio no-core shell model calculations using two accurate nucleon-nucleon interactions and the importance-truncation scheme. The comparison provides strong evidence that the inclusion of three-body forces is needed to describe the low-lying excited-state properties of this A = 18 system
    • 

    corecore