4,051 research outputs found
Rotational Perturbations of Friedmann-Robertson-Walker Type Brane-World Cosmological Models
First order rotational perturbations of the Friedmann-Robertson-Walker metric
are considered in the framework of the brane-world cosmological models. A
rotation equation, relating the perturbations of the metric tensor to the
angular velocity of the matter on the brane is derived under the assumption of
slow rotation. The mathematical structure of the rotation equation imposes
strong restrictions on the temporal and spatial dependence of the brane matter
angular velocity. The study of the integrable cases of the rotation equation
leads to three distinct models, which are considered in detail. As a general
result we find that, similarly to the general relativistic case, the rotational
perturbations decay due to the expansion of the matter on the brane. One of the
obtained consistency conditions leads to a particular, purely inflationary
brane-world cosmological model, with the cosmological fluid obeying a
non-linear barotropic equation of state.Comment: 14 pages, 5 figures, REVTEX
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations
Efficient Dynamic Compressor Optimization in Natural Gas Transmission Systems
The growing reliance of electric power systems on gas-fired generation to
balance intermittent sources of renewable energy has increased the variation
and volume of flows through natural gas transmission pipelines. Adapting
pipeline operations to maintain efficiency and security under these new
conditions requires optimization methods that account for transients and that
can quickly compute solutions in reaction to generator re-dispatch. This paper
presents an efficient scheme to minimize compression costs under dynamic
conditions where deliveries to customers are described by time-dependent mass
flow. The optimization scheme relies on a compact representation of gas flow
physics, a trapezoidal discretization in time and space, and a two-stage
approach to minimize energy costs and maximize smoothness. The resulting
large-scale nonlinear programs are solved using a modern interior-point method.
The proposed optimization scheme is validated against an integration of dynamic
equations with adaptive time-stepping, as well as a recently proposed
state-of-the-art optimal control method. The comparison shows that the
solutions are feasible for the continuous problem and also practical from an
operational standpoint. The results also indicate that our scheme provides at
least an order of magnitude reduction in computation time relative to the
state-of-the-art and scales to large gas transmission networks with more than
6000 kilometers of total pipeline
Causal Bulk Viscous Dissipative Isotropic Cosmologies with Variable Gravitational and Cosmological Constants
We consider the evolution of a flat Friedmann-Robertson-Walker Universe,
filled with a causal bulk viscous cosmological fluid, in the presence of
variable gravitational and cosmological constants. The basic equation for the
Hubble parameter, generalizing the evolution equation in the case of constant
gravitational coupling and cosmological term, is derived, under the
supplementary assumption that the total energy of the Universe is conserved. By
assuming that the cosmological constant is proportional to the square of the
Hubble parameter and a power law dependence of the bulk viscosity coefficient,
temperature and relaxation time on the energy density of the cosmological
fluid, two classes of exact solutions of the field equations are obtained. In
the first class of solutions the Universe ends in an inflationary era, while in
the second class of solutions the expansion of the Universe is non-inflationary
for all times. In both models the cosmological "constant" is a decreasing
function of time, while the gravitational "constant" increases in the early
period of evolution of the Universe, tending in the large time limit to a
constant value.Comment: 14 pages, 15 figure
Distinguishing impurity concentrations in GaAs and AlGaAs, using very shallow undoped heterostructures
We demonstrate a method of making a very shallow, gateable, undoped
2-dimensional electron gas. We have developed a method of making very low
resistivity contacts to these structures and systematically studied the
evolution of the mobility as a function of the depth of the 2DEG (from 300nm to
30nm). We demonstrate a way of extracting quantitative information about the
background impurity concentration in GaAs and AlGaAs, the interface roughness
and the charge in the surface states from the data. This information is very
useful from the perspective of molecular beam epitaxy (MBE) growth. It is
difficult to fabricate such shallow high-mobility 2DEGs using modulation doping
due to the need to have a large enough spacer layer to reduce scattering and
switching noise from remote ionsied dopants.Comment: 4 pages, 5 eps figure
Load Embeddings for Scalable AC-OPF Learning
AC Optimal Power Flow (AC-OPF) is a fundamental building block in power
system optimization. It is often solved repeatedly, especially in regions with
large penetration of renewable generation, to avoid violating operational
limits. Recent work has shown that deep learning can be effective in providing
highly accurate approximations of AC-OPF. However, deep learning approaches may
suffer from scalability issues, especially when applied to large realistic
grids. This paper addresses these scalability limitations and proposes a load
embedding scheme using a 3-step approach. The first step formulates the load
embedding problem as a bilevel optimization model that can be solved using a
penalty method. The second step learns the encoding optimization to quickly
produce load embeddings for new OPF instances. The third step is a deep
learning model that uses load embeddings to produce accurate AC-OPF
approximations. The approach is evaluated experimentally on large-scale test
cases from the NESTA library. The results demonstrate that the proposed
approach produces an order of magnitude improvements in training convergence
and prediction accuracy
Viscous Bianchi type I universes in brane cosmology
We consider the dynamics of a viscous cosmological fluid in the generalized
Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the
dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic
theory. By assuming that the matter on the brane obeys a linear barotropic
equation of state, and the bulk viscous pressure has a power law dependence on
the energy density, the general solution of the field equations can be obtained
in an exact parametric form. The obtained solutions describe generally a
non-inflationary brane world. In the large time limit the brane Universe
isotropizes, ending in an isotropic and homogeneous state. The evolution of the
temperature and of the comoving entropy of the Universe is also considered, and
it is shown that due to the viscous dissipative processes a large amount of
entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra
Renormalization Group Approach to Causal Viscous Cosmological Models
The renormalization group method is applied to the study of homogeneous and
flat Friedmann-Robertson-Walker type Universes, filled with a causal bulk
viscous cosmological fluid. The starting point of the study is the
consideration of the scaling properties of the gravitational field equations,
of the causal evolution equation of the bulk viscous pressure and of the
equations of state. The requirement of scale invariance imposes strong
constraints on the temporal evolution of the bulk viscosity coefficient,
temperature and relaxation time, thus leading to the possibility of obtaining
the bulk viscosity coefficient-energy density dependence. For a cosmological
model with bulk viscosity coefficient proportional to the Hubble parameter, we
perform the analysis of the renormalization group flow around the scale
invariant fixed point, therefore obtaining the long time behavior of the scale
factor.Comment: 19 pages. RevTeX4. Revised version. Accepted in Classical and Quantum
Gravit
- …