11,564 research outputs found
Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall
Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high
gravimetric and volumetric energy densities, but solid deposits on active
surfaces can disturb charge transport and induce mechanical stress. In this
Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals
in lithium-oxygen batteries with organic electrolytes, based on a theory of
electrochemical non-equilibrium thermodynamics originally applied to Li-ion
batteries. As in the case of lithium insertion in phase-separating LiFePO4
nanoparticles, the theory predicts a transition from complex to uniform
morphologies of Li2O2 with increasing current. Discrete particle growth at low
discharge rates becomes suppressed at high rates, resulting in a film of
electronically insulating Li2O2 that limits cell performance. We predict that
the transition between these surface growth modes occurs at current densities
close to the exchange current density of the cathode reaction, consistent with
experimental observations.Comment: 8 pages, 6 fig
Effect of finishing rolling reduction on microstructures and textures of grain oriented silicon steel
The effect of finishing rolling reduction on microstructures and textures of grain oriented silicon steel was researched by optical microscopy, zeiss ultra 55 Scanning Electron Microscope (SEM) and Electron Backscatter Diffraction (EBSD) technique severally. The results show that the grain size of hot rolled sheets and decarburized strips decreases, while the center grain size of the normalized sheet increases with the increase of the finishing rolling reduction. The pearlite content increases with the increase of the finishing rolling reduction after normalization. Compare with the previous research, the effect of finishing rolling reduction on the grain size of primary recrystallization is greater than that of roughing rolling reduction, and large rolling reduction is beneficial to the formation of {110} texture
Effect of hot rolling reduction on microstructures and textures of grain oriented silicon steel
The effect of hot rolling reduction on microstructures and textures of grain oriented silicon steel was studied by optical microscopy (OM), zeiss ultra 55 Scanning electron microscope (SEM) and Electron backscatter diffraction (EBSD) technique respectively. The results indicate that the effect of hot rolling reduction on grain size of hot rolled and normalized sheets in surface layer is great, while the effect on grain size of primary recrystallized grain is little. The shear zone thickens with the finishing reduction decreases, moreover strong {111} and {110} textures can be obtained in hot rolled sheets. Combined with the previous research conclusions, it can be found that the rolling process of oriented silicon steel is contributed to the formation of texture, while the recrystallization process reduces the sharpness of the texture
Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain
The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on the regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l.) from 19 to 28 April, 2010, when the air masses were advected from the east (phase-I: 19–21 April), from the south (phase-II: 22–25 April), and from the northwest (phase-III: 26–28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM<sub>2.5</sub> were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a high percentage of particles were sulfur-rich (47–49%). In phase-III, the haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were dominant (43%). NPF followed by particle growth during daytime was more pronounced on hazy than on clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10–22 nm in the morning to 56–96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. However, the presence of fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles indicates that they could weaken NPF and enhance particle growth through condensation and coagulation. Abundant mineral particles in phase-III likely suppressed the NPF processes because they supplied sufficient area on which acidic gases or acids condensed
Community detection in complex networks using flow simulation
Community detection and analysis is an important part of studying the organization of complex systems in real world, and it�s extensively applied on many fields. Recently, many of existing algorithms are not effective or the results are unstable. In this paper, a new method of community testing is proposed by us based on the conception of flow field. In our approach, each node is represented as a field source and has a tendency to forward data to the connected nodes with highest field strength, after some iterations the nodes with same data information form a community. It is evaluated by us for the approach on some synthetic and real-world networks whose community structures are known. It is demonstrated that the approach performs wellin effectiveness and robustness. © 2017 Association for Computing Machinery
Evolution equation of entanglement for general bipartite systems
We explore how entanglement of a general bipartite system evolves when one
subsystem undergoes the action of an arbitrary noisy channel. It is found that
the dynamics of entanglement for general bipartite systems under the influence
of such channel is determined by the channel's action on the maximally
entangled state, which includes as a special case the results for two-qubit
systems [Nature Physics 4, 99 (2008)]. In particular, for multi-qubit or
qubit-qudit systems, we get a general factorization law for evolution equation
of entanglement with one qubit being subject to a noisy channel. Our results
can help the experimental characterization of entanglement dynamics.Comment: 4 pages, 1 figur
- …