16,397 research outputs found

    Interdot Coulomb repulsion effect on the charge transport of parallel double single electron transistors

    Full text link
    The charge transport behaviors of parallel double single electron transistors (SETs) are investigated by the Anderson model with two impurity levels. The nonequilibrium Keldysh Green's technique is used to calculate the current-voltage characteristics of system. For SETs implemented by quantum dots (QDs) embedded into a thin SiO2SiO_2 layer, the interdot Coulomb repulsion is more important than the interdot electron hopping as a result of high potential barrier height between QDs and SiO2SiO_2. We found that the interdot Coulomb repulsion not onlyleads to new resonant levels, but also creates negative differential conductances.Comment: 12 pages, 7 figure

    Microscopic Restoration of Proton-Neutron Mixed Symmetry in Weakly Collective Nuclei

    Get PDF
    Starting from the microscopic low-momentum nucleon-nucleon interaction V{low k}, we present the first systematic shell model study of magnetic moments and magnetic dipole transition strengths of the basic low-energy one-quadrupole phonon excitations in nearly-spherical nuclei. Studying in particular the even-even N=52 isotones from 92Zr to 100Cd, we find the predicted evolution of the predominantly proton-neutron non-symmetric state reveals a restoration of collective proton-neutron mixed-symmetry structure near mid-shell. This provides the first explanation for the existence of pronounced collective mixed-symmetry structures in weakly-collective nuclei.Comment: 5 Pages, 3 figure

    Low-momentum ring diagrams of neutron matter at and near the unitary limit

    Full text link
    We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various 1S0^1S_0 scattering lengths such as as=−12070fma_s=-12070fm and +21fm+21fm are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding asa_s-equivalent low-momentum potentials Vlow−kV_{low-k}, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy E0E_0 of neutron matter for various scattering lengths. At the limit of as→±∞a_s\to \pm \infty, our calculated ratio of E0E_0 to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with Vlow−kV_{low-k} and those with GG-matrix interactions are compared.Comment: 9 pages, 7 figure

    Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions

    Full text link
    We present shell model calculations for the beta-decay of the 14C ground state to the 14N ground state, treating the states of the A=14 multiplet as two 0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN) interactions derived from the realistic Bonn-B potential and find that the Gamow-Teller matrix element is too large to describe the known lifetime. By using a modified version of this potential that incorporates the effects of Brown-Rho scaling medium modifications, we find that the GT matrix element vanishes for a nuclear density around 85% that of nuclear matter. We find that the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is improved using the medium-modified Bonn-B potential and that the transition strengths from excited states of 14C to the 14N ground state are compatible with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion

    Detection of hidden mineral deposits by airborne spectral analysis of forest canopies

    Get PDF
    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter
    • …
    corecore