38,278 research outputs found

    Characterization of proteins by means of their buffer capacity, measured with an ISFET-based coulometric sensor-actuator system

    Get PDF
    Proteins form the specific selector in many biochemical sensors. A change in one of the properties of such a protein has to be detected by an appropriate transducer, which completes the biochemical sensor. One of these properties is the buffer capacity of a protein. If the binding of a substance to a protein can significantly change the proton binding, which accounts for the buffer capacity of proteins, the detection of this changed buffer capacity enables the construction of a new type of biosensor.\ud \ud It will be shown that the buffer capacity can be measured with an ISFET-based sensor—actuator device. The alternating generation of protons and hydroxyl ions by alternating current coulometry at a porous noble metal actuator electrode causes an associated small pH perturbation, which is detected by the underlying pH-sensitive ISFET. The amplitude of the measured signal is a function of the buffer capacity of the solute, in which proteins can be present (or these proteins can be adsorbed in the porous actuator electrode of the device). A model describing the transfer function from the electrical input signal of the actuator to the resulting chemical output, which is subsequently detected by the ISFET pH sensor, is presented. Preliminary results of the measured buffer capacity of ribonuclease and lysozyme are presented

    Determination of buffer capacity by means of an ISFET-based coulometric sensor-actuator system with a gate-covering porous actuator

    Get PDF
    In this paper we propose a dynamic way to measure the buffer capacity of an electrolyte by means of an ISFET-based coulometric sensor-actuator system whose gate is covered with a porous actuator. A theoterical model for this measurement is presented. Experiments are carried out in nitric and acetic acid as well as in phosphoric acid solutions. A fairly good agreement has been found between the theoretical calculations and the experimental results

    Dynamic behaviour of ISFET-based sensor-actuator systems

    Get PDF
    Rapid acid-base titrations can be performed at the surface of a noble-metal electrode with coulometrically generated ions. An ISFET is used as an indicator electrode to detect the equivalence point in the resulting titration curve. The time needed to reach the equivalence point is typically 0.5 to 10 s for acid/base concentrations ranging from 0.5 × 10−3 to 20 × 10−3 mol l−1.\ud \ud A model is presented describing the concentration profiles which appear during the coulometric generation of ions. The result of this model is in good agreement with corresponding measurements. These measurements are carried out with two different actuator electrodes, of which the processing steps are described

    Comment on "Novel Convective Instabilities in a Magnetic Fluid"

    Full text link
    Comment on the paper "Novel Convective Instabilities in a Magnetic Fluid" by W. Luo, T. Du, and J. Huang, Phys. Rev. Lett., v.82, p.4134 (1999).Comment: 1 page, 1 figure, To appear in Phys. Rev. Lett. (2001

    Six-dimensional weak-strong simulations of head-on beam-beam compensation in RHIC

    Full text link
    To compensate the large beam-beam tune spread and beam-beam resonance driving terms in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), we will introduce a low-energy DC electron beam into each ring to collide head-on with the opposing proton beam. The device to provide the electron beam is called an electron lens. In this article, using a 6-D weak-strong-beam-beam interaction simulation model, we investigate the effects of head-on beam-beam compensation with electron lenses on the proton beam dynamics in the RHIC 250 GeV polarized proton operation. This article is abridged from the published article [1].Comment: 5 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    A volume inequality for quantum Fisher information and the uncertainty principle

    Full text link
    Let A1,...,ANA_1,...,A_N be complex self-adjoint matrices and let ρ\rho be a density matrix. The Robertson uncertainty principle det(Covρ(Ah,Aj))det(i2Tr(ρ[Ah,Aj])) det(Cov_\rho(A_h,A_j)) \geq det(- \frac{i}{2} Tr(\rho [A_h,A_j])) gives a bound for the quantum generalized covariance in terms of the commutators [Ah,Aj][A_h,A_j]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1N=2m+1. Let ff be an arbitrary normalized symmetric operator monotone function and let ρ,f_{\rho,f} be the associated quantum Fisher information. In this paper we conjecture the inequality det(Covρ(Ah,Aj))det(f(0)2ρ,f) det (Cov_\rho(A_h,A_j)) \geq det (\frac{f(0)}{2} _{\rho,f}) that gives a non-trivial bound for any natural number NN using the commutators i[ρ,Ah]i[\rho, A_h]. The inequality has been proved in the cases N=1,2N=1,2 by the joint efforts of many authors. In this paper we prove the case N=3 for real matrices

    Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130

    Full text link
    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of NH=8×10204×1021N_{H}=8\times10^{20}-4\times10^{21} cm2^{-2} when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the 4 observations. This suggests the observed absorption is not related to the typical "shielding gas" commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the CIV BAL shows strong variability. The equivalent width (EW) in 2014 is EW=11.24±\pm0.56 \AA, showing a fractional increase of ΔEW/EW\Delta EW / \langle EW \rangle=1.16±\pm0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap
    corecore