2,943 research outputs found

    Unambiguous Acquisition and Tracking Technique for General BOC Signals

    Get PDF
    This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite

    Full text link
    Impurity effects on the stability of a ferromagnetic metallic state in a bicritical-state manganite, (La0.7Pr0.3)0.65Ca0.35MnO3, on the verge of metal-insulator transition have been investigated by substituting a variety of transition-metal atoms for Mn ones. Among them, Fe doping exhibits the exceptional ability to dramatically decrease the ferromagnetic transition temperature. Systematic studies on the magnetotransport properties and x-ray diffraction for the Fe-doped crystals have revealed that charge-orbital ordering evolves down to low temperatures, which strongly suppresses the ferromagnetic metallic state. The observed glassy magnetic and transport properties as well as diffuse phase transition can be attributed to the phase-separated state where short-range charge-orbital-ordered clusters are embedded in the ferromagnetic metallic matrix. Such a behavior in the Fe-doped manganites form a marked contrast to the Cr-doping effects on charge-orbital-ordered manganites known as impurity-induced collapse of charge-orbital ordering.Comment: 8 pages, 7 figure

    Relationship between macroscopic physical properties and local distortions of low doping La{1-x}Ca{x}MnO3: an EXAFS study

    Full text link
    A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.Comment: 27 pages, 8 figures, to be submitted to Phys. Rev.

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    Effects Of Post-Deposition Annealing Temperature And Time On Physical Properties Of Metal-Organic Decomposed Lanthanum Cerium Oxide Thin Film.

    Get PDF
    Lanthanum cerium oxide (LaxCeyOz) precursor was prepared using metal-organic decomposition method. The effects of post-deposition annealing temperatures (400-1000 °C) and annealing time (15-120 minutes) in argon ambient on physical properties of the deposited film were investigated

    Spin freezing and dynamics in Ca_{3}Co_{2-x}Mn_{x}O_{6} (x ~ 0.95) investigated with implanted muons: disorder in the anisotropic next-nearest neighbor Ising model

    Full text link
    We present a muon-spin relaxation investigation of the Ising chain magnet Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations persisting down to the lowest measured temperature of 1.6 K. The previously observed transition at around T ~18 K is interpreted as a subtle change in dynamics for a minority of the spins coupling to the muon that we interpret as spins locking into clusters. The dynamics of this fraction of spins freeze below a temperature T_{SF}~8 K, while a majority of spins continue to fluctuate. An explanation of the low temperature behavior is suggested in terms of the predictions of the anisotropic next-nearest-neighbor Ising model.Comment: 4 pages, 2 figure
    corecore