2,684 research outputs found
Longitudinal excitations in quantum antiferromagnets
By extending our recently proposed magnon-density-waves to low dimensions, we
investigate, using a microscopic many-body approach, the longitudinal
excitations of the quasi-one-dimensional (quasi-1d) and quasi-2d Heisenberg
antiferromagnetic systems on a bipartite lattice with a general spin quantum
number. We obtain the full energy spectrum of the longitudinal mode as a
function of the coupling constants in the original lattice Hamiltonian and find
that it always has a non-zero energy gap if the ground state has a long-range
order and becomes gapless for the pure isotropic 1d model. The numerical value
of the minimum gap in our approximation agrees with that of a longitudinal mode
observed in the quasi-1d antiferromagnetic compound KCuF at low
temperature. It will be interesting to compare values of the energy spectrum at
other momenta if their experimental results are available.Comment: 19 pages, 4 figure
Excited states of quantum many-body interacting systems: A variational coupled-cluster description
We extend recently proposed variational coupled-cluster method to describe
excitation states of quantum many-body interacting systems. We discuss, in
general terms, both quasiparticle excitations and quasiparticle-density-wave
excitations (collective modes). In application to quantum antiferromagnets, we
reproduce the well-known spin-wave excitations, i.e. quasiparticle magnons of
spin . In addition, we obtain new, spin-zero magnon-density-wave
excitations which has been missing in Anserson's spin-wave theory. Implications
of these new collective modes are discussed.Comment: 17 pages, 4 figure
Calculations of Resonance Coupling Constants in the Scalar Sector of the ENJL Model
We derive the scalar resonance coupling constants of resonance chiral theory
from the Extended Nambu Jona-Lasinio model by using heat-kernel expansion.Comment: 7 page
Spatially Resolved Far-Ultraviolet Spectroscopy of the Nuclear Region of NGC 1068
We carry out high-resolution FUSE spectroscopy of the nuclear region of NGC
1068. The first set of spectra was obtained with a 30" square aperture that
collects all emission from the narrow-line region. The data reveal a strong
broad OVI component of FWHM ~3500 kms-1 and two narrow OVI 1031/1037 components
of ~350 kms-1. The CIII 977 and NIII 991 emission lines in this spectrum can be
fitted with a narrow component of FWHM ~1000 kms-1 and a broad one of ~2500
kms-1. Another set of seven spatially resolved spectra were made using a long
slit of 1.25" X 20", at steps of ~1" along the axis of the emission-line cone.
We find that (1) Major emission lines in the FUSE wavelength range consist of a
broad and a narrow component; (2) There is a gradient in the velocity field for
the narrow OVI component of ~200 kms-1 from ~2" southwest of the nucleus to ~4"
northeast. A similar pattern is also observed with the broad OVI component,
with a gradient of ~3000 kms-1. These are consistent with the HST/STIS findings
and suggest a biconical structure in which the velocity field is mainly radial
outflow; (3) A major portion of the CIII and NIII line flux is produced in the
compact core. They are therefore not effective temperature diagnostics for the
conical region; and (4) The best-fitted UV continuum suggests virtually no
reddening, and the HeII 1085/1640 ratio suggests a consistently low extinction
factor across the cone.Comment: To appear in the Astrophysical Journal. 37 pages with 12 figure
The Yang-Lee zeros of the 1D Blume-Capel model on connected and non-connected rings
We carry out a numerical and analytic analysis of the Yang-Lee zeros of the
1D Blume-Capel model with periodic boundary conditions and its generalization
on Feynman diagrams for which we include sums over all connected and
non-connected rings for a given number of spins. In both cases, for a specific
range of the parameters, the zeros originally on the unit circle are shown to
departure from it as we increase the temperature beyond some limit. The curve
of zeros can bifurcate and become two disjoint arcs as in the 2D case. We also
show that in the thermodynamic limit the zeros of both Blume-Capel models on
the static (connected ring) and on the dynamical (Feynman diagrams) lattice
tend to overlap. In the special case of the 1D Ising model on Feynman diagrams
we can prove for arbitrary number of spins that the Yang-Lee zeros must be on
the unit circle. The proof is based on a property of the zeros of Legendre
Polynomials.Comment: 19 pages, 5 figure
Quasienergy spectra of a charged particle in planar honeycomb lattices
The low energy spectrum of a particle in planar honeycomb lattices is
conical, which leads to the unusual electronic properties of graphene. In this
letter we calculate the quasienergy spectra of a charged particle in honeycomb
lattices driven by a strong AC field, which is of fundamental importance for
its time-dependent dynamics. We find that depending on the amplitude, direction
and frequency of external field, many interesting phenomena may occur,
including band collapse, renormalization of velocity of ``light'', gap opening
etc.. Under suitable conditions, with increasing the magnitude of the AC field,
a series of phase transitions from gapless phases to gapped phases appear
alternatively. At the same time, the Dirac points may disappear or change to a
line. We suggest possible realization of the system in Honeycomb optical
lattices.Comment: 4+ pages, 5 figure
Ellipsoidal universe in the brane world
We study a scenario of the ellipsoidal universe in the brane world cosmology
with a cosmological constant in the bulk . From the five-dimensional Einstein
equations we derive the evolution equations for the eccentricity and the scale
factor of the universe, which are coupled to each other. It is found that if
the anisotropy of our universe is originated from a uniform magnetic field
inside the brane, the eccentricity decays faster in the bulk in comparison with
a four-dimensional ellipsoidal universe. We also investigate the ellipsoidal
universe in the brane-induced gravity and find the evolution equation for the
eccentricity which has a contribution determined by the four- and
five-dimensional Newton's constants. The role of the eccentricity is discussed
in explaining the quadrupole problem of the cosmic microwave background.Comment: 15 pages, 1 figure, Version 3, references added, contents expande
Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model
We investigate the primordial trispectra of the general multifield DBI
inflationary model. In contrast with the single field model, the entropic modes
can source the curvature perturbations on the super horizon scales, so we
calculate the contributions from the interaction of four entropic modes
mediating one adiabatic mode to the trispectra, at the large transfer limit
(). We obtained the general form of the 4-point correlation
functions, plotted the shape diagrams in two specific momenta configurations,
"equilateral configuration" and "specialized configuration". Our figures showed
that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
Relating Quantum Information to Charged Black Holes
Quantum non-cloning theorem and a thought experiment are discussed for
charged black holes whose global structure exhibits an event and a Cauchy
horizon. We take Reissner-Norstr\"{o}m black holes and two-dimensional dilaton
black holes as concrete examples. The results show that the quantum non-cloning
theorem and the black hole complementarity are far from consistent inside the
inner horizon. The relevance of this work to non-local measurements is briefly
discussed.Comment: 14 pages, 2 figure
- …
