1,744 research outputs found
The X-ray Properties of the Most-Luminous Quasars from the Sloan Digital Sky Survey
Utilizing 21 new Chandra observations as well as archival Chandra, ROSAT, and
XMM-Newton data, we study the X-ray properties of a representative sample of 59
of the most optically luminous quasars in the Universe (M_i~~-29.3 to -30.2)
spanning a redshift range of z~~1.5-4.5. Our full sample consists of 32 quasars
from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3) quasar catalog,
two additional objects in the DR3 area that were missed by the SDSS selection
criteria, and 25 comparably luminous quasars at z>~4. This is the largest X-ray
study of such luminous quasars to date. By jointly fitting the X-ray spectra of
our sample quasars, excluding radio-loud and broad absorption line (BAL)
objects, we find a mean X-ray power-law photon index of
Gamma=1.92^{+0.09}_{-0.08} and constrain any neutral intrinsic absorbing
material to have a mean column density of N_H<~2x10^{21} cm^{-2}. We find,
consistent with other studies, that Gamma does not change with redshift, and we
constrain the amount of allowed Gamma evolution for the most-luminous quasars.
Our sample, excluding radio-loud and BAL quasars, has a mean X-ray-to-optical
spectral slope of a_ox=-1.80+/-0.02, as well as no significant evolution of
a_ox with redshift. We also comment upon the X-ray properties of a number of
notable quasars, including an X-ray weak quasar with several strong narrow
absorption-line systems, a mildly radio-loud BAL quasar, and a well-studied
gravitationally lensed quasar.Comment: 18 pages (emulateapj), 11 figures. Accepted for publication in The
Astrophysical Journa
The Isomorphism Relation Between Tree-Automatic Structures
An -tree-automatic structure is a relational structure whose domain
and relations are accepted by Muller or Rabin tree automata. We investigate in
this paper the isomorphism problem for -tree-automatic structures. We
prove first that the isomorphism relation for -tree-automatic boolean
algebras (respectively, partial orders, rings, commutative rings, non
commutative rings, non commutative groups, nilpotent groups of class n >1) is
not determined by the axiomatic system ZFC. Then we prove that the isomorphism
problem for -tree-automatic boolean algebras (respectively, partial
orders, rings, commutative rings, non commutative rings, non commutative
groups, nilpotent groups of class n >1) is neither a -set nor a
-set
Role of unstable periodic orbits in phase transitions of coupled map lattices
The thermodynamic formalism for dynamical systems with many degrees of
freedom is extended to deal with time averages and fluctuations of some
macroscopic quantity along typical orbits, and applied to coupled map lattices
exhibiting phase transitions. Thereby, it turns out that a seed of phase
transition is embedded as an anomalous distribution of unstable periodic
orbits, which appears as a so-called q-phase transition in the spatio-temporal
configuration space. This intimate relation between phase transitions and
q-phase transitions leads to one natural way of defining transitions and their
order in extended chaotic systems. Furthermore, a basis is obtained on which we
can treat locally introduced control parameters as macroscopic ``temperature''
in some cases involved with phase transitions.Comment: 13 pages, 9 figures; further explanation and 2 figures are added
(minor revision
Continued-fraction expansion of eigenvalues of generalized evolution operators in terms of periodic orbits
A new expansion scheme to evaluate the eigenvalues of the generalized
evolution operator (Frobenius-Perron operator) relevant to the
fluctuation spectrum and poles of the order- power spectrum is proposed. The
``partition function'' is computed in terms of unstable periodic orbits and
then used in a finite pole approximation of the continued fraction expansion
for the evolution operator. A solvable example is presented and the approximate
and exact results are compared; good agreement is found.Comment: CYCLER Paper 93mar00
Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes
The double barrier resonant tunneling diode exhibits complex spatio-temporal
patterns including low-dimensional chaos when operated in an active external
circuit. We demonstrate how autosynchronization by time--delayed feedback
control can be used to select and stabilize specific current density patterns
in a noninvasive way. We compare the efficiency of different control schemes
involving feedback in either local spatial or global degrees of freedom. The
numerically obtained Floquet exponents are explained by analytical results from
linear stability analysis.Comment: 10 pages, 16 figure
Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback
In present paper we discuss the control of complex spatio-temporal dynamics
in a {spatially extended} non-linear system (fluid model of Pierce diode) based
on the concepts of controlling chaos in the systems with few degrees of
freedom. A presented method is connected with stabilization of unstable
homogeneous equilibrium state and the unstable spatio-temporal periodical
states analogous to unstable periodic orbits of chaotic dynamics of the systems
with few degrees of freedom. We show that this method is effective and allows
to achieve desired regular dynamics chosen from a number of possible in the
considered system.Comment: 12 pages, 12 figure
Time-delayed feedback control in astrodynamics
In this paper we present time-delayed feedback control (TDFC) for the purpose of autonomously driving trajectories of nonlinear systems into periodic orbits. As the generation of periodic orbits is a major component of many problems in astodynamics we propose this method as a useful tool in such applications. To motivate the use of this method we apply it to a number of well known problems in the astrodynamics literature. Firstly, TDFC is applied to control in the chaotic attitude motion of an asymmetric satellite in an elliptical orbit. Secondly, we apply TDFC to the problem of maintaining a spacecraft in a periodic orbit about a body with large ellipticity (such as an asteroid) and finally, we apply TDFC to eliminate the drift between two satellites in low Earth orbits to ensure their relative motion is bounded
Discovery of a stellar companion to the nearby solar-analogue HD 104304
Sun-like stars are promising candidates to host exoplanets and are often
included in exoplanet surveys by radial velocity (RV) and direct imaging. In
this paper we report on the detection of a stellar companion to the nearby
solar-analogue star HD 104304, which previously was considered to host a
planetary mass or brown dwarf companion. We searched for close stellar and
substellar companions around extrasolar planet host stars with high angular
resolution imaging to characterize planet formation environments. The detection
of the stellar companion was achieved by high angular resolution measurements,
using the "Lucky Imaging" technique at the ESO NTT 3.5m with the AstraLux Sur
instrument. We combined the results with VLT/NACO archive data, where the
companion could also be detected. The results were compared to precise RV
measurements of HD 104304, obtained at the Lick and Keck observatories from
2001-2010.
We confirmed common proper motion of the binary system. A spectral type of
M4V of the companion and a mass of 0.21 M_Sun was derived. Due to comparison of
the data with RV measurements of the unconfirmed planet candidate listed in the
Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is
the origin of the RV trend and that the inclination of the orbit of
approximately 35 degrees explains the relatively small RV signal.Comment: 4 pages, 4 PNG figures, use aa.cls, accepted for publication in
Astronomy & Astrophysic
Brownian motion with dry friction: Fokker-Planck approach
We solve a Langevin equation, first studied by de Gennes, in which there is a
solid-solid or dry friction force acting on a Brownian particle in addition to
the viscous friction usually considered in the study of Brownian motion. We
obtain both the time-dependent propagator of this equation and the velocity
correlation function by solving the associated time-dependent Fokker-Planck
equation. Exact results are found for the case where only dry friction acts on
the particle. For the case where both dry and viscous friction forces are
present, series representations of the propagator and correlation function are
obtained in terms of parabolic cylinder functions. Similar series
representations are also obtained for the case where an external constant force
is added to the Langevin equation.Comment: 18 pages, 13 figures (in color
- âŠ