63 research outputs found

    Meiotic Transmission of an In Vitro–Assembled Autonomous Maize Minichromosome

    Get PDF
    Autonomous chromosomes are generated in yeast (yeast artificial chromosomes) and human fibrosarcoma cells (human artificial chromosomes) by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs). We constructed circular MMCs by combining DsRed and nptII marker genes with 7–190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected), 39% transmission as a monosome crossed to wild type (50% expected), and 59% transmission in self crosses (75% expected). The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i) combining several trait genes on a single DNA fragment, (ii) arranging genes in a defined sequence context for more consistent gene expression, and (iii) providing an independent linkage group that can be rapidly introgressed into various germplasms

    Information-theoretic principle entails orthomodularity of a lattice

    Full text link
    Quantum logical axiomatic systems for quantum theory usually include a postulate that a lattice under consideration is orthomodular. We propose a derivation of orthomodularity from an information-theoretic axiom. This provides conceptual clarity and removes a long-standing puzzle about the meaning of orthomodularity.Comment: Version prior to published, with slight modification

    Die Erkrankungen der Leber im Sinne des Icterus Simplex

    No full text

    To Cope with the Uncertainity in Smart Energy Systems: Office Buildings as a Source for Energy Flexibility

    No full text
    Electricity energy generation and its supply through electricity networks is mainly organized in a top-down, centralized manner. Energy consumption can be predicted quite accurately at a high level, and this forms the basis for pre-scheduling the production by large power plants. Only few actors are involved in the generation, trade, and transportation of electricity, but this is changing rapidly. Renewable energy conversion (such as wind and solar energy, geothermal energy or as supplied by biomass systems at farms) will lead to a large amount of distributed and fluctuating (small) renewable energy sources throughout the grid, at homes, farms, and companies. The need of centralized electricity generation thus becomes more difficult to plan. This can lead to large problems and unstable electricity grids and therefore we have to develop approaches to deal with this increasing uncertainty. The use of Information and Communication Technology (ICT) and Control Technology (CT) will provide us many options for stabilizing electricity networks. Besides this also on the demand side new consumers such as electric vehicles and heat pumps (with large demand but also high flexibility or storage capacity) appear. The increasing share of decentralized renewable energy conservation in combination with the new types of consumers will drastically alter the operation of electricity systems. Smart Grids are developed by all major electricity distribution companies together with industry to cope with the dispersed electricity production by matching of supply and demand by smart ICT and CT. The future stricter sustainability demands will lead to offices with their own renewable energy sources and energy storage capacity. Office buildings will become a potential source of energy flexibility which can be offered to the grid as a Virtual Power Plant (VPP). In order to minimize uncertainty in the balance between energy supply and demand it is necessary to develop realistic user behavior, installations behavior and Smart Grid interaction. Monitoring the needs and preferences of users is necessary to predict future states of the demand for the SES (e.g. based on weather forecasts and user behavior). Automated prosumer support is needed to optimize interaction between offices and Smart grid

    Szintillationsspektrometrie weicher R�ntgenstrahlung

    No full text
    • …
    corecore