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Autonomous chromosomes are generated in yeast (yeast artificial chromosomes) and human fibrosarcoma cells
(human artificial chromosomes) by introducing purified DNA fragments that nucleate a kinetochore, replicate, and
segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering
DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods
that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired
expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that
carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of
autonomous maize minichromosomes (MMCs). We constructed circular MMCs by combining DsRed and nptll marker
genes with 7-190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats
commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize
tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in
the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous
MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios
approaching Mendelian inheritance: 93% transmission as a disome (100% expected), 39% transmission as a monosome
crossed to wild type (50% expected), and 59% transmission in self crosses (75% expected). The fluorescent DsRed
reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded
genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i) combining
several trait genes on a single DNA fragment, (ii) arranging genes in a defined sequence context for more consistent
gene expression, and (iii) providing an independent linkage group that can be rapidly introgressed into various
germplasms.
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Introduction from random insertion into the plant genome [6,7]. In
addition, combining binary T-DNA elements with bacterial
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crops such as maize, transgene integration can also result in
genetic linkage of the introduced genes to portions of the
genome known to encode loci that confer undesired
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introgressed into other varieties [4,5]. Recent advances in
gene integration technologies have aimed to surmount some
of these difficulties. For example, zinc finger-mediated
homologous recombination or site-specific recombination
could eliminate the unpredictable expression that results
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Author Summary

The production of transgenic maize has traditionally used techni-
ques that integrate DNA fragments into a host chromosome. This
can disrupt important native genes or can lead to poor expression of
the added gene; consequently, large numbers of transgenic plants
must be screened to find one suitable for commercial use. Further,
there is a limit to the amount of DNA that can be integrated, making
it difficult to add multiple genes at one time. Here, we describe a
new system for delivering genes to maize. We constructed a
minichromosome vector that remains separate, or autonomous,
from the plant’'s chromosomes when introduced into maize cells.
These minichromosomes were constructed from DNA sequences
that naturally occur in maize centromeres, the chromosomal regions
needed for inheritance. We characterized the behavior of Maize
Minichromosome 1 (MMC1) through four generations, showing that
it is efficiently inherited and that the genes it carries are expressed.
This work makes it possible to design minichromosomes that carry
several genes, enhancing the ability to engineer plant processes,
including improving disease resistance, drought tolerance, or the
production of complex biochemicals.

vectors often make them a preferred choice for numerous
applications, including commercial-scale protein production.
The first eukaryotic minichromosomes employed a simple
centromere (CEN) sequence from the budding yeast S.
cerevisiae, incorporated into versatile circular CEN and linear
yeast artificial chromosome (YAC) vectors [10,11]. These yeast
vectors were used to define a 125-bp DNA fragment sufficient
for mitotic and meiotic centromere function [12]. While
circular CEN vectors are most useful for carrying smaller
DNA fragments, YAC vectors can carry megabase quantities
of DNA and are convenient for manipulating large fragments
of DNA [13]. Similarly, with carrying capacities of hundreds
of kb, human artificial chromosomes (HACs) provide advan-
tages over other in vitro-assembled vectors used in human
cell transfection [14]. HACs containing tandem repeats of a
171-bp alpha satellite sequence can be maintained either as
circular or linear, telomere-containing, episomes [15-19].
DNA sequences that can form stable minichromosomes are
able to recapitulate centromere functions de novo by
recruiting essential DNA binding proteins and epigenetic
modifications. In human cells, different satellite arrays vary in
their ability to efficiently form HACs, based on their satellite
monomer sequence, chromosomal origin, array length, high-
er-order structure, and even vector composition [20-23].
These DNA sequences recruit centromere binding protein A
(CENP-A), which substitutes for histone H3 to form centro-
meric nucleosomes; this protein marks active centromeres in
S. cerevisiae (Csedp), Schizosaccharomyces pombe (Cnpl), Drosophila
melanogaster (Cid), Arabidopsis thaliana (HTRI12), Zea mays
(CENH3), and Homo sapiens (CENP-A) [24-29]. CENP-A
complexes are maintained through mitosis and meiosis [30],
resulting in an epigenetic mark that may be more important
in perpetuating centromere activity than the underlying DNA
sequence. Evidence for this role in centromere maintenance
comes from human neocentromeres [31], where, at a very low
frequency, ectopic centromeres are nucleated in regions that
lack satellite DNA. Once formed, these neocentromeres are
efficiently perpetuated. The ability to form centromeres on
naked DNA also depends on cell type in mammalian systems;
indeed, HAC formation has only been demonstrated in
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HT1080 fibrosarcoma cells. Yet once established, HACs can
be transferred to other mammalian cell types, where they are
stably maintained [32].

Maize centromeres contain repetitive sequences that are
similar to those found in mammalian centromeres; for
example, analogous to the tandem arrays of alpha satellite
found in human centromeres, large tandem arrays of the 156-
bp maize CentC satellite bind to CENP-A [33,34,28]. These
satellite arrays are often interrupted by CRM, a centromere-
specific retroelement that also binds CENP-A [28]; the
significance of this arrangement for centromere function is
unknown. Some maize varieties also have supernumerary B
chromosomes with a distinct centromere satellite sequence,
ZmBs [35,36]. These B chromosomes lack essential genes, and
thus have been particularly useful for discerning the relation-
ship between centromere structure and meiotic transmission
[37-39]. A series of deletion derivatives of natural B
chromosomes, derived from an A-B translocation event,
showed a strong dependence on centromere size—the small-
est functional derivative contained a 110-kb centromere and
resulted in a meiotic transmission rate of 5%, yet showed a
high stability in mitosis [39]. More recently, telomere-
mediated chromosomal truncation was used to generate
deletion derivatives from both A and B maize chromosomes
[40]. Transgenes carried on these derivative chromosomes (or
“engineered minichromosomes”) were expressed and meiotic
inheritance ranged from 12% to 39% [40]. While this
telomere-truncation approach can deliver both transgenes
and sequences that promote site-directed integration, its
utility for commercial applications may be limited—most
commercial maize hybrids lack B chromosomes, and the
duplications needed to maintain truncated A chromosomes
may prove challenging for regulatory approval.

As described below, we developed autonomous minichro-
mosomes that do not rely on alteration of endogenous
chromosomes. We constructed plasmids carrying maize
centromeric repeats, delivered purified constructs to em-
bryogenic maize tissue, and assessed their ability to promote
the formation of MMCs. MMC1 was characterized in detail;
this CentC-based construct contained 19 kb of centromeric
DNA and conferred efficient mitotic and meiotic inheritance
through at least four generations when introduced into plant
cells. This approach could be widely used in commercial corn
production—a construct with a defined sequence will
facilitate regulatory review, while MMC independence from
the host genome reduces the risk of alternations that impair
host fitness.

Results

Screen for Functional Maize Minichromosomes

We probed a maize genomic BAC library with repetitive
sequences, including those typically found in maize centro-
meres (Materials and Methods; Table 1). Clones enriched in
satellite sequences, centromeric retroelements, and other
repetitive sequences were chosen to assess whether they can
form MMCs when delivered to plant cells. While our study did
not explore the interactions between MMC DNA inserts and
kinetochore or spindle proteins, we hereafter refer to these
fragments as “centromeric,” based on the typical genomic
location of the sequences they contain. In vitro Cre-lox
recombination was used to fuse selected BAC clones to a
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Table 1. Classification of Maize BAC Clones Containing Repetitive DNA

Class® CentAP Cent4® CentC® CRMP MZEHETRO® TR-1P MMCs© Autonomous*
[ <7 - >7 <7 13 10
I >6 - >7 <7 6 5
i <6 - >7 >6 10 10
v >6 - >7 >6 8 8
v >0 ; >7 >0 6 5
Vi >0 >5 >0 >0 - - 1 1
vl >0 = >0 = <6 >6 2 2
Vil >0 - >0 >7 <5 3 3
X >0 - >0 >6 >6 3 3
Total 52 47

“BAC clones were sorted into hybridization classes | through IX;

PPhosphorimager signal intensity to the indicated repetitive probes, normalized to a scale of 1-10.

“MMCs characterized.
dAutonomous MMCs characterized, by class (see Table 2). MMC1 was derived from Class I.
doi:10.1371/journal.pgen.0030179.t001

circular vector containing a plant selectable marker (nptll)
and a cell-autonomous reporter gene (nuclear-expressed
DsRed), forming circular constructs. While circular and linear
HACGs containing repetitive centromeric DNA are mitotically
transmitted in human cell lines, circular HACs can confer
higher levels of meiotic transmission in transgenic mice
[3,20,32]. Consequently, we focused our initial efforts on
circular constructs, generating plants by bombarding em-
bryogenic maize tissue with purified candidate MMC DNA,
selecting transformed cells expressing the npt/l marker and
resistant to antibiotics, and propagating regenerated plants
in the absence of selection (see Materials and Methods). Of
the 102 constructs bombarded, 66 gave rise to regenerated
plants; 52 of these constructs were randomly chosen and
characterized as described below.

To evaluate whether the introduced constructs were
maintained autonomously or instead had integrated into
the genome, we preformed fluorescence in situ hybridization
(FISH). We arrested root tip cells in mitosis, and stained
chromosome spreads [41] with rhodamine and fluorescein-
labeled probes corresponding to centromeric repeats and to
MMC-encoded genes, respectively (Figure 1A-1I). FISH
labeling of integrated control constructs resulted in adjacent
pairs of metaphase FISH signals corresponding to replicated
sister chromatids (Figure 1J). While some MMC constructs
integrated (see below), we considered MMCs autonomous
when (1) >70% of the cells examined (n > 15) contained
signals that were clearly distinct from the DAPI-stained host
chromosomes, (ii) integrated signals were not detected, and
iii) the fluorescent probe corresponding to the MMC-
encoded genes colocalized with the probe to repetitive
centromeric DNA, suggesting an intact construct and making
it unlikely that the signal was due to noise. In many cases, the
detection of a DAPI signal that colocalized with the FISH
probes provided further evidence of MMC autonomy (Figure
1B-1D and 1F-1H).

Based on these criteria, 47/52 (90%) of the constructs we
evaluated with FISH were able to form an autonomous MMC,
and 43/52 (with centromeric inserts ranging in size from 7 to
190 kb) gave rise to plants that contained only an
autonomous MMC (Table 2). This unexpectedly high rate of
recovering autonomous MMCs suggests that embryogenic
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maize tissue readily establishes MMCs from purified DNA and
that the BAC clones that yielded transformed plants
contained sequences that efficiently promote MMC forma-
tion. The efficiency of forming an autonomous MMC
increased slightly, although not significantly (¢-test), as the
size of the genomic DNA insert increased (Figure 1K). A
similar analysis of human centromeric fragments showed that
as little as 35 kb could generate a HAC, while larger fragments
(70-220 kb) were required for efficient HAC formation [42].
As described below, MMCs were often efficiently inherited;
nonetheless, MMC integration was detected only during the
initial transformation event, and not in subsequent gener-
ations (T1 through T4, 0/312 metaphase spreads, 33 plants).
Below, we report on the composition and behavior of one of
the MMC constructs (MMC1) in detail.

Meiotic Inheritance of MMC1

Control transformations performed with a DsRedmptl]
plasmid lacking a centromere-derived insert (pCHR758)
contained a construct that integrated, as expected, into a
native chromosome (7/7 events, Figure 1]). In contrast, for
MMC1, 5/9 independent transformation events yielded solely
an autonomous chromosome (Figure 1A-1H, see also Figure
S1) and 4/9 generated both integrated and autonomous
copies (Figure 1I). We tested the ability of these MMCs to
confer inheritance by crossing TO transformants to wild type,
growing the progeny without selection, and monitoring
nuclear-localized DsRed fluorescence (Figure 2A). Because
we typically observed only one MMC per cell (monosomic), we
expected these TO plants to behave as hemizygotes; if the
MMC obeyed Mendelian inheritance, then such crosses would
yield DsRed progeny in a 1:1 ratio. Ten TO plants (derived
from three events) carrying solely an autonomous MMCI1
copy were crossed to wild-type pollen. Two of the MMCI
events (V-1 and Q-1) indeed transmitted DsRed to T1
offspring in ratios that did not differ significantly from
Mendelian predictions (Table 3). However, for a third MMC1
event (Q-2), we saw a significant reduction in DsRed" progeny
compared to expectations (52%, Table 3), suggesting genetic
instability. PCR analysis of the progeny from this cross
confirmed that the plants lacking DsRed expression also
lacked DsRed sequences, indicating that the deviation from
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Figure 1. Generation of Autonomous Minichromosomes

(A-H) Metaphase chromosome spreads from MMC1 event V-1: (A-D) T1 plant; (B-D) correspond to the region denoted by the arrowhead in (A); (E-H) T2
plant. DNA is stained with DAPI ([B F], blue) and labeled with FISH probes specific for the DsRed and nptll gene cassette ([C, G], green); or centromere
sequences ([D, H], red).

(I, J) Event V-4 with autonomous and integrated copies of MMC1 (l); pCHR758 (noncentromeric control) (J). Autonomous minichromosomes
(arrowheads); integrated constructs appear as pairs of FISH signals (arrows); size bar, 5 pm.

(K) Centromere fragments across a wide size range enable autonomous MMC inheritance. For each size category, the percentage of transformation
events (total = 52) that yielded only an autonomous MMC (white bars) or both an autonomous and integrated MMC in the same cell (grey bars) is

shown; the number of MMCs in each category is noted parenthetically; error bars indicate standard error.

doi:10.1371/journal.pgen.0030179.g001

Mendelian assortment was not due to silencing of gene
expression. Instead, the elevated MMC loss rate in this event
could result from in planta modifications of the centromeric
insert or from epigenetic effects that led to less robust
segregation [43]. As expected, performing a similar analysis of
six events carrying an integrated pCHR758 backbone yielded
Mendelian inheritance ratios (118:119 DsRed:DsRed”; p >
0.05).

FISH analysis showed that T1 plants from event V-1
retained an autonomous MMC: a DsRed-containing episome
was present in 80% of root metaphase cells (n = 44), a
detection level consistent with previous artificial chromo-
some studies [44]. Because we consistently observed DsRed
expression in nearly every cell from these plants (see below),
we conclude that the absence of an MMC FISH signal in 20%
of root cells likely represents the challenges of retaining and
detecting every MMC throughout the FISH protocol. To
monitor MMCI inheritance in subsequent generations and
through both male and female gametes, we performed a series
of crosses with T1, T2, and T3 plants derived from event V-1
and monitored DsRed transmission. When male or female
monosomic MMC1 plants were crossed to wild type, DsRed
segregation was not significantly different from Mendelian
inheritance ratios (1:1, Table 3). For one exceptional T1
plant, however, such crosses yielded no progeny containing
MMC1 (female: 0:48, male: 0:35; Table 3); the absence of
DsRed-encoding DNA in these progeny was confirmed by
PCR, supporting the view that this MMC was indeed
autonomous. Interestingly, the leaf tissue of this plant had
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prominent mitotic DsRed leaf sectors, suggesting a high rate
of MMC instability.

When we self-pollinated T2 and T3 hemizygous plants
derived from event V-1, we observed DsRed " inheritance in a
ratio that did not significantly differ from a 3:1 Mendelian
pattern. However, in a second case of non-Mendelian
assortment, a self-cross in the T1 generation yielded a 1:1
DsRed" inheritance ratio, suggesting loss of MMC1 from
either the male or female floral tissue. Nonetheless, this cross
was useful for generating plants that potentially carried two
copies of MMC1 (homozygous disomes). Crossing pollen from
a candidate T2 disome onto five different maize inbreds
yielded 184 DsRed 18 DsRed~ offspring (p > 0.05 for disomy).
Similarly, self-pollinating potentially disomic T2 or T3 plants
produced 48:0 and 24:0 DsRed :DsRed ™ offspring, respectively.
Quantitative PCR (qPCR) analysis of the potentially disomic
T2 plants confirmed 2.00 and 1.90 (standard error = 0.08)
DsRed copies per cell, respectively (see Materials and
Methods).

MMCT1 Stability: Gene Expression and Structure

For most plants carrying an autonomous MMC, nuclear
DsRed expression was observed in nearly every leaf cell,
indicating stability through mitosis. In some cases, however,
sectors that lacked DsRed expression were found (Figure 2B-
2D); these were generally limited to a few cell files. In
reproductive tissues, such sectors could be responsible for the
aberrant meiotic MMC segregation described above. In total,
mitotic sectors of DsRed expression from MMC1 were
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Table 2. MMC Transformation Events and FISH Analysis

Construct® Explants® Transformation Analyzed Autonomous Integrated Autonomous
Events by FISH and Integrated
1 264 10 9 5 — 4
2 87 2 2 2 — —
3 87 1 1 1 — —
4 150 13 1 1 — —
5 25 1 1 — 1 —
6 150 8 3 3 — —
7 204 22 10 4 — 6
8 134 6 1 1 — —
9 54 4 1 — — 1
10 54 2 1 — 1 —
11 54 1 1 — 1 —
12 54 2 1 — —
13 50 3 1 — —
14 50 3 1 — — 1
15 50 3 2 — 1
16 168 7 1 — —
17 50 4 2 — — 2
18 50 6 4 3 — 1
19 50 2 1 1 — —
20 200 5 5 4 — 1
21 50 1 1 1 — —
22 50 1 1 1 — —
23 50 1 1 1 — —
24 40 1 1 1 — —
25 60 1 1 1 — —
26 60 1 1 1 — —
27 60 2 1 1 — —
28 126 6 1 1 — —
29 65 3 1 1 — —
30 126 2 1 1 — —
31 126 4 2 1 — 1
32 168 10 5 4 — 1
33 294 15 2 2 — —
34 168 1 1 1 — —
35 126 12 5 3 — 2
36 126 7 2 1 — 1
37 110 6 2 1 — 1
38 126 6 1 1 — —
39 126 8 2 2 — —
40 126 1 1 1 —
41 168 6 1 1 — —
42 126 4 2 1 — 1
43 206 2 1 — 1 —
44 126 2 1 1 — —
45 126 6 5 3 1 1
46 126 7 2 1 —
47 126 2 2 2 — —
48 126 10 3 1 — 2
49 206 1 1 — 1 —
50 126 3 1 1 — —
51 126 6 1 — — 1
52 126 2 2 2 — —
Total 5,882 245 104 69 6 29

2Candidate MMCs; construct 1 is MMC1.
PNumber of embryogenic tissues bombarded.
doi:10.1371/journal.pgen.0030179.t002

detected in 3.6% of TO plants (n = 56), 3.0% of T1 plants (n=
404), 1.9% of T2 plants (n=2837), and no T3 (n="738) or T4 (n
= 250) plants. The reduced sectoring frequency as plants
advanced through generations suggests a gradual increase in
MMC stability due to changes in DNA composition, epige-
netic modifications, or MMC copy number in mitotic cells. A
similar stabilization through generations was observed in an
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oat-maize addition line [45]. We also found that 60 d of
crowding and drought stress did not appreciably alter MMC1
stability; DsRed expression was found in every T2 and T3
plant from event V-1 grown under stress (151 and 159 plants,
respectively). Moreover, pollen from stressed hemizygous T2
plants demonstrated Mendelian DsRed segregation (281:238
DsRed":DsRed p > 0.05).
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(A) Fluorescent detection of nuclear-localized DsRed in MMC1 maize leaf; size bar, 50 um.
(B, C) Detection of DsRed sectors in a T2 plant leaf from event V-1 under (B) bright-field and (C) fluorescence microscopy; size bars, 0.5 mm.
(D) high magnification view of image shown in (C) with the corresponding sector, comprising all cell layers, indicated by an asterisk; the edge of a sector

that comprises only the adaxial cell layer is indicated by arrowheads, ce

lIs with typical DsRed expression are indicated by arrows. Size bar, 50 pm.

(E) MMC consisting of a pCHR758 backbone and a centromere-derived insert, gene expression cassettes (grey), centromeric inserts (box), Bglll restriction
sites (arrowheads), and probes used for FISH and Southern blot analyses are indicated.

(F) Southern blot of DNA digested with Bglll and hybridized to probes 1-

hybridizing to probes 5 and 6 vary in size, depending on the location of

6 (E); Bands 1-4 measure 2,067, 3,167, 5,227 and 790 bp, respectively; those
Bglll sites within the centromeric DNA insert. MMC1 Control (c, lanes 1 and 5)

DNA was purified from E. coli and hybridization patterns were compared to DNA from plant cell extracts derived from MMC1 events V-1 (lanes 2-4), Q-2
(lane 6), and V-4 (lane 7), as well as from plants transformed with pCHR758 (lane 8) and untransformed wild type (H99, lane 9). For events V-1 and Q-2,

bands differing from bacterial grown controls are indicated (arrows and
doi:10.1371/journal.pgen.0030179.g002

To assess the structure of MMCI1 through generations, we
performed Southern blot analysis, probing to detect all of the
unique sequence bands contained in the MMC construct
(Figure 2E and 2F). MMC structural alterations sometimes
occurred during transformation, often involving the centro-
meric insert, rather than the gene cassette (Figure 2F).
Additional rearrangements were typically not detected after
the T1 generation (n = 5), although the repetitive nature of
the centromeric fragment made it impossible to thoroughly
evaluate its structure on these blots. In addition, Southern
blot analysis showed centromeric alterations in event V-1 that
were transmitted from the T1 parent to the T2 progeny.
Event Q-2 suffered a larger alteration of the centromeric
fragments (indicated by an asterisk in Figure 2F), potentially
explaining its reduced meiotic stability. In contrast, an event
carrying both integrated and autonomous MMC1 copies (V-4)
showed a more complicated pattern, as did plants carrying
integrated pCHR758. As expected for independently assort-
ing loci, when plants from event V-4 were crossed to wild
type, the autonomous and integrated copies segregated: FISH
evaluation of DsRed-expressing T2 plants yielded a 1:4:2 ratio
(autonomous:autonomous and integrated:integrated).

MMC1 Composition

MMCI1 was originally identified by its strong hybridization
to a CentC probe, suggesting it contained a high percentage
of this satellite repeat (Table 1). Sequence analysis confirmed
the presence of CentC repeats arranged in an uninterrupted
tandem array (GenBank accession number in Supporting
Information; Figure 3A and 3B). The repetitive nature of
CentC made a precise assembly of this array challenging; we
used rare DNA polymorphisms within the repeats to aid in
sequence assembly, and confirmed the overall length of the
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asterisk, respectively).

array (approximately 9 kb) with restriction enzyme digestion
and gel electrophoresis. Based on these measurements and
quantitative dot blot hybridization (see Materials and
Methods) the CentC array contains between 59 and 64 (61.4
* 2.3) copies. CentC repeat alignments showed that each
base is conserved at an average frequency of 96.1% (Figure
3C and 3D), a level consistent with previously reported plant
satellite conservation [46]. Clustering algorithms failed to
detect higher order repeat patterns in MMC1 (unpublished
data).

While the maize genome has an average GC content of
49.5%, the 5.6- and 4.8-kb regions flanking the CentC array of
MMC1 reach 88% and 70% GC, respectively (Figure 3B).
Overall, the GC content of the MMC1 centromeric insert is
48%; by comparison, published sequences from two maize
centromeric BACs had 43% and 47% GC content [34] while
Arabidopsis and rice centromere DNA averages 35%-40% and
39%-48%, respectively [47,48]. MMC1 encodes four regions
with similarity to retrotransposons xilon, cinful, or ji [49], as
well as a 453-bp open reading frame (MMCI1.1) that
potentially encodes a novel protein of unknown function,
complete with a promoter and poly-A signal (Figure 3A).
BLAST searches of GenBank revealed no evidence for
MMCI1.1 expression, but transcripts >959% identical to CentC
and to the MMCI retrotransposons were abundant. Tran-
scription of centromeric repeats is important for centromere
function in S. pombe [50], and Arabidopsis satellites are also
transcribed [51]. The centromere-specific histone CENH3
binds to transcripts corresponding to CentC and to the
retrotransposon CRM, suggesting a role for these RNAs in
centromere function [52]; it is not clear if xilon, cinful, or ji
transcripts play a similar role. Retrotransposons also can
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Table 3. Meiotic Inheritance of MMC1

Construct Event Generation Female® Male® Expected Observed Progeny % Loss©
Progeny Ratio Ratio (p-Value)®

MMC1 V-1 TO MMC1 (M) WT 1:1 78:94 (0.75) 9.3
T MMC1 (M) wT 1:1 118:149 (0.06) 12
T1 WT MMC1 (M) 1:1 31:48 (0.06) 215
T MMC1 (M) wWT 11 0:48 (*) 100
T wT MMC1 (M) 11 0:35 (%) 100
T1 MMCT (M) MMC1 (M) 31 61:86 (*) 44.7
T2 MMC1 (M) wWT 1:1 67:65 (0.86) 0
T2 MMC1 (M) MMC1 (M) 31 82:35 (0.22) 6.6
T2 WT MMC1 (D) 1:0 184:18 (NA) 8.9
T2 MMC1 (D) MMC1 (D) 1:0 48:0 (NA) 0
T3 MMC1 (M) WT 1:1 38:37 (0.91) 0
T3 MMCT (M) MMC1 (M) 31 80:33 (0.3) 5.6

MMC1 Q-1 TO MMC1 (M) wT 1:1 17:19 (0.74) 5.6

MMC1 Q-2 TO MMC1 (M) wWT 1:1 33:105 (*) 52

pCHR758 1 TO pCHR758 (M) WT 1:1 118:119 (0.95) 0.4

M, monosomic for MMC1; D, disomic for MMC1; WT, wild-type maize.

bp-Value calculations based on chi-square distributions with 1 degree of freedom. p-Values significantly different from expectations (x? p < 0.05) are indicated with an asterisk. p-Values

were not calculated for expectations of 1:0 and are noted as NA.

“Loss rates calculated as the difference between the expected and observed numbers of DsRed positive progeny, expressed as percent of the expected (assuming Mendelian assortment).
dCrosses derived from a single V-1 plant that demonstrated sectoring in the T1 generation; loss was confirmed by PCR.

doi:10.1371/journal.pgen.0030179.t003

nucleate the formation of heterochromatin that can spread
to nearby regions [53], although MMCl-encoded DsRed and
nptll were readily expressed, despite their separation of 3.3
and 6.2 kb, respectively, from retrotransposons.

Discussion

Taken together, the experiments described above strongly
support the conclusion that MMC1 can be maintained as an
autonomous chromosome: it remains distinct from host
chromosomes, its gene cassette is structurally stable through
at least four generations, the genes it carries are expressed
and transmitted through meiosis and mitosis, and, in some
cases, it can be lost from the genome at a frequency higher
than that of a native chromosome. Interestingly, classical
studies of plant trisomics typically reveal far greater defects
in meiotic inheritance [54], while inheritance levels similar to
those we observed with MMCs have been reported in other
artificial chromosome systems. For example, a monosomic
mouse artificial chromosome that showed <1% mitotic loss
when carried in human, bovine, or mouse cell lines [55],
suffered only 4% meiotic loss through the mouse germline
[44]. Furthermore, while classically studied ring chromosomes
are often unstable [56], circular MMC inheritance through
four generations was reminiscent of that observed for
circular chromosomes from yeast [57], mammals [32], and
maize [58]. These data suggest that this MMC could be
maintained indefinitely.

MMC centromere sequences, like those that make up
endogenous centromeres, could rely on the kinetochore and
spindle machinery for faithful segregation, or could be
inherited through alternative mechanisms. For example, in
plants, dense heterochromatic domains known as knobs or
neocentromeres migrate to daughter cells by moving along
the sides of the spindle, rather than by kinetochore-mediated
association with the ends of microtubules. This process
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results in preferential assortment to gametes, and conse-
quently greater than expected inheritance ratios (termed
meiotic drive) [59]. Heterochromatin-based mechanisms of
assortment have also been characterized in Drosophila, where
chromosomes that lack evidence of meiotic exchange
(chiasmata) are nonetheless inherited at Mendelian ratios
[60]. Further, in S. cerevisiae, which lacks appreciable hetero-
chromatin, the 2-pm circle plasmid is partitioned at an
efficiency that rivals that of yeast chromosomes; this assort-
ment relies on microtubule-mediated attachment of cohesin
to 2 um of DNA [61]. The possibility that MMC segregation
might rely on alternative mechanisms is intriguing; indeed,
the relatively small MMCs may differ from mammalian
artificial chromosomes in which large alpha satellite arrays
bind essential centromere proteins.

Epigenetic factors have been postulated to play a principal
role in establishing higher eukaryotic centromeres [43], with
studies of human neocentromeres [62] and Drosophila strains
overexpressing CENH3 [63] suggesting a lack of dependence
on specific DNA sequences. On the other hand, HACs are
able to efficiently nucleate centromere activity in a sequence-
dependent manner, and HAC sequences tend to expand in
vivo [20], suggesting a selection for a preferred size and/or
composition. The MMC1 DNA that we delivered to plant cells
was purified from E. coli and thus lacked eukaryotic
epigenetic marks, yet it formed autonomous chromosomes.
This MMC construct contained only a 19-kb centromeric
insert and is thus substantially smaller than the centromeric
regions that were previously known to provide mitotic and
meiotic inheritance. For example, the fully sequenced
centromere of rice Chromosome 8 contains a satellite array
measuring 69 kb [64], and a deletion derivative of the maize B
chromosome that measures 110 kb is sufficient to confer
meiotic inheritance, albeit inefficiently [39]. While HACs
routinely expand to a larger size in vivo, we did not detect
major rearrangements or expansions of MMCI DNA through
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two plant generations, suggesting that its composition was
adequate to establish a minichromosome. Nonetheless, our
analysis was unable to fully assess the structure of the
repetitive centromeric DNA, and it remains possible that
these regions could expand, contract, or rearrange in some
other manner.

While the total size of MMCI1 is quite small (35 kb), other
MMCs, some measuring over 200 kb, were successfully
delivered to plants and transmitted through meiosis (unpub-
lished data). This suggests that MMC1 has the capacity to
serve as a platform to carry a large number of genes. As this
MMC is optimized to commercial performance levels, it will
provide an unprecedented opportunity to deliver gene
combinations (“stacks”) that confer valuable traits to corn
varieties. Long breeding programs are often required to
introgress an integrated transgene into desired germplasm,
while eliminating undesirable linked loci. Because an MMC
forms an independent linkage group, these programs could
be accelerated, allowing products to appear in the market-
place sooner. Moreover, the performance and expression of
transgenic traits will likely become more predictable and
reliable as MMC design rules are understood. Extensions of
this minichromosome technology beyond traditional agricul-
ture may enable the construction of multigene pathways to
produce pharmaceuticals and other industrial products in
plants.

Materials and Methods

Construction of candidate MMCs. A BAC library was created in
pBeloBAC11 using Mbol-digested DNA from the maize inbred B73.
This library was arrayed on nitrocellulose filters and probed
separately with repetitive sequences from maize that are often found
in centromeres or neocentromeres: CentA, Cent4, CentC, CRM,
MZEHETRO, and TR-1; **P-labeled probes were hybridized for 14 h
at 65 °C and washed with 0.5X SSC, 1% SDS three times at 65 °C. To
identify clones carrying centromere DNA, phosphorimager scans of
each hybridization experiment were digitally assembled into a
MySQL database. BAC clones with strong hybridization signals to
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one or more of the repetitive sequences were selected for
minichromosome construction (Table 1). First, a high copy number
plasmid (pCHR758) carrying the Arabidopsis UBQ10 promoter to
DsRed (Clonetech) and the yeast YAT1 promoter fused to nptll was
constructed. An 8.5-kb fragment encoding the DsRed and nptll
expression constructs (and lacking a bacterial origin) was liberated
from pCHR758 with I-Ppol, purified from an agarose gel (QIAquick
Gel Extraction Kit, Qiagen), and circularized by Cre-mediated
exchange (New England Biolabs) at two loxP sites that flanked the
gene expression cassette. BAC clones carrying putative centromere
DNA insertions were recombined with this vector via the loxP site in
pBeloBACI11, generating circular candidate MMC constructs (Figure
2E). These constructs were maintained in E. coli DH10B (Invitrogen).

Delivery and propagation of candidate MMCs in plants. MMC
constructs grown in E. coli were purified using alkaline lysis or cesium
chloride protocols and delivered to embryogenic H99 maize tissues
by biolistic bombardment of DNA-coated gold particles as described
[65]. Transformed events were identified by selection on Chu’s N6
medium containing G418 sulfate (PhytoTechnology Laboratories) or
paromomycin (Sigma) and regenerated. Transformed plants were
subsequently grown without selection in a soilless mix (Sunshine LC1)
in a greenhouse (16-h d, 26-28 °C). Seedlings were grown in 48-well
flats (2 sq ft) with one plant per well to the V3 developmental stage
and then transplanted into 1.6-gallon pots containing 1:1:1 soil:peat:-
perlite and grown to maturity. Plants subjected to stress conditions
were maintained in 48-well flats for 60 d with watering limited to
once per day. MMC containing plants have been advanced through
four generations by backcrossing to H99, outcrossing to public maize
inbreds, and by self pollination or sibling mating.

Fluorescence assays. For DsRed expression, leaf 3 (V2 stage of
development) was sampled across its entire width (minimally 2,500
cells per sample) and fluorescence was detected using a Zeiss SV-11
dissecting microscope equipped with a rhodamine filter cube
(excitation: D540/25; dichroic 565LP; emission: D605/55). Background
autofluorescence was detected with a GFP filter cube (excitation: BP
470/40; beamsplitter: FT495; emission: BP 525/50); bona fide DsRed
fluorescence was not detectable at this excitation wavelength. DsRed
expression in pollen was determined after fixing florets in 95%
ethanol; aceto-carmine staining was subsequently used to assess
pollen viability. For FISH, root tips were collected approximately 10
d after transplanting regenerated TO plants to soil or after
germination (T1 through T4 plants). Sampled roots (3-6 per plant)
were moistened and exposed to nitrous oxide at 150 psi for 2.5 h to
arrest chromosomes in metaphase [66]. Roots were fixed in 90%
acetic acid and spread onto poly-lysine coated glass slides by
squashing thin cross sections. FISH was performed essentially as
described [41] using probes labeled with Alexa488 (pCHR758,
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Molecular Probes) and Alexab68 (CentC, Roche). Following hybrid-
ization, slides were counterstained with DAPI (0.04 mg/ml) and >15
metaphase cells were evaluated per plant using a Zeiss Axio-Imager
equipped with thodamine, FITC, and DAPI filter sets (excitation BP
550/24, emission BP 605/70; excitation BP 470/40, emission: BP525/50;
and excitation G 365, emission BP 445/50, respectively). Extrachro-
mosomal signals were only considered to indicate autonomous MMCs
if >70% of the images (n > 15 cells analyzed) showed colocalization of
the Alexa488 and Alexab68 signals within one nuclear diameter of the
endogenous metaphase maize chromosomes. Grayscale images were
captured in each panel, merged, and adjusted with pseudo-color
using Zeiss AxioVision (Version 4.5) software; fluorescent signals
from doubly labeled MMCs were detected in both the red and green
channels.

PCR and Southern blot analysis. PCRs were carried out on
genomic DNA isolated from young plants; qPCRs were performed
in triplicate using a BioRad Chromo4 machine with TagMan primers
and probes (Sigma-Genosys). Amplification was achieved by incubat-
ing at 95 °C for 3 min, and 39 cycles of 95 °C for 15 s and 59 °C for 48
s, with a 1 s reduction per cycle. Copy number determinations were
made by comparing qPCR signals from a control plasmid containing
one copy of the maize Adhl gene and DsRed to the signals obtained
from MMC-containing plants. For Southern blots, genomic DNA was
isolated from young leaf tissue using a Nucleobond Plant Genomic
DNA extraction kit (Clontech). Ten micrograms of DNA was digested
with BglII (New England Biolabs), separated on a 0.7% agarose gel,
vacuum transferred to a nylon membrane (Amersham BioSciences),
and probed with a mixture of nonoverlapping pCHR758 fragments
labeled with 2P (Rediprime II, Amersham BioSciences). Hybrid-
ization was performed overnight at 65 °C and blots were washed three
times (15 min each) with 0.25X SSC, 0.1% SDS at 65 °C; signals were
detected with a Storm phosphorimager.

Sequencing and sequence analyses. MMC1 was sequenced to an
average of 30X coverage by shotgun sequencing (Lark Technologies)
and 454 Technology (454 Life Sciences) and assembled with Phred/
Phrap; a small gap was closed by primer walking, using direct dye-
terminator cycling sequencing of MMCI. Quantitative dot blotting
was used to calculate the total size of the CentC array. Briefly, two sets
of blots, each containing samples in triplicate, were hybridized with
CentC (CC) and vector specific (V) probes separately. Signals for each
spot were captured with a Storm phosphorimager and CC/V ratios
were calculated. Plasmids with the vector sequence and one, three,
and eight copies of a cloned CentC repeat were used as standards.
MMCI1 assembly was verified by restriction mapping with panels of
enzymes (BamHI, BmgBI, EcoRI and HindIII); this data was consistent
with the calculated size of the CentC array. BLASTN (http://www.ncbi.
nlm.nih.gov/BLAST/Blast.cgi) was used to assess sequence similarity,
GENSCAN (http://genes.mit.edu/GENSCAN.html) to predict pro-
moters and open reading frames, and repeat finder (http://tandem.
bu.edu/trf/trf.basic.submit.html) to analyze CentC satellites.
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