226 research outputs found

    Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based

    Get PDF
    Indolmycin is a natural tryptophan analog that competes with tryptophan for binding to tryptophanyl-tRNA synthetase (TrpRS) enzymes. Bacterial and eukaryotic cytosolic TrpRSs have comparable affinities for tryptophan (Km ∼ 2 μm), and yet only bacterial TrpRSs are inhibited by indolmycin. Despite the similarity between these ligands, Bacillus stearothermophilus (Bs)TrpRS preferentially binds indolmycin ∼1500-fold more tightly than its tryptophan substrate. Kinetic characterization and crystallographic analysis of BsTrpRS allowed us to probe novel aspects of indolmycin inhibitory action. Previous work had revealed that long range coupling to residues within an allosteric region called the D1 switch of BsTrpRS positions the Mg2+ ion in a manner that allows it to assist in transition state stabilization. The Mg2+ ion in the inhibited complex forms significantly closer contacts with non-bridging oxygen atoms from each phosphate group of ATP and three water molecules than occur in the (presumably catalytically competent) pre-transition state (preTS) crystal structures. We propose that this altered coordination stabilizes a ground state Mg2+·ATP configuration, accounting for the high affinity inhibition of BsTrpRS by indolmycin. Conversely, both the ATP configuration and Mg2+ coordination in the human cytosolic (Hc)TrpRS preTS structure differ greatly from the BsTrpRS preTS structure. The effect of these differences is that catalysis occurs via a different transition state stabilization mechanism in HcTrpRS with a yet-to-be determined role for Mg2+. Modeling indolmycin into the tryptophan binding site points to steric hindrance and an inability to retain the interactions used for tryptophan substrate recognition as causes for the 1000-fold weaker indolmycin affinity to HcTrpRS

    Evolution-Operator-Based Single-Step Method for Image Processing

    Get PDF
    This work proposes an evolution-operator-based single-time-step method for image and signal processing. The key component of the proposed method is a local spectral evolution kernel (LSEK) that analytically integrates a class of evolution partial differential equations (PDEs). From the point of view PDEs, the LSEK provides the analytical solution in a single time step, and is of spectral accuracy, free of instability constraint. From the point of image/signal processing, the LSEK gives rise to a family of lowpass filters. These filters contain controllable time delay and amplitude scaling. The new evolution operator-based method is constructed by pointwise adaptation of anisotropy to the coefficients of the LSEK. The Perona-Malik-type of anisotropic diffusion schemes is incorporated in the LSEK for image denoising. A forward-backward diffusion process is adopted to the LSEK for image deblurring or sharpening. A coupled PDE system is modified for image edge detection. The resulting image edge is utilized for image enhancement. Extensive computer experiments are carried out to demonstrate the performance of the proposed method. The major advantages of the proposed method are its single-step solution and readiness for multidimensional data analysis

    Activation of miR-9 by human papillomavirus in cervical cancer

    Get PDF
    Cervical cancer is the third most common cancer in women worldwide, leading to about 300,000 deaths each year. Most cervical cancers are caused by human papillomavirus (HPV) infection. However, persistent transcriptional activity of HPV oncogenes, which indicates active roles of HPV in cervical cancer maintenance and progression, has not been well characterized. Using our recently developed assays for comprehensive profiling of HPV E6/E7 transcripts, we have detected transcriptional activities of 10 high-risk HPV strains from 87 of the 101 cervical tumors included in the analysis. These HPV-positive patients had significantly better survival outcome compared with HPV-negative patients, indicating HPV transcriptional activity as a favorable prognostic marker for cervical cancer. Furthermore, we have determined microRNA (miRNA) expression changes that were correlated with tumor HPV status. Our profiling and functional analyses identified miR-9 as the most activated miRNA by HPV E6 in a p53-independent manner. Further target validation and functional studies showed that HPV-induced miR-9 activation led to significantly increased cell motility by downregulating multiple gene targets involved in cell migration. Thus, our work helps to understand the molecular mechanisms as well as identify potential therapeutic targets for cervical cancer and other HPV-induced cancers

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology

    High Fat Diet Induces Formation of Spontaneous Liposarcoma in Mouse Adipose Tissue with Overexpression of Interleukin 22

    Get PDF
    Interleukin 22 (IL-22) is a T-cell secreted cytokine that modulates inflammatory response in nonhematopoietic tissues such as epithelium and liver. The function of IL-22 in adipose tissue is currently unknown. We generated a transgenic mouse model with overexpression of IL-22 specifically in adipose tissue. The IL-22 transgenic mice had no apparent changes in obesity and insulin resistance after feeding with high fat diet (HFD). Unexpectedly, all the IL-22 transgenic mice fed with HFD for four months developed spontaneous tumors in epididymal adipose tissue. Histological analysis indicated that the tumors were well-differentiated liposarcomas with infiltration of inflammatory cells. IL-22 overexpression promotes production of inflammatory cytokines such as IL-1β and IL-10 and stimulates ERK phosphorylation in adipose tissue. Furthermore, IL-22 treatment in differentiated 3T3-L1 adipocytes could induce IL-1β and IL-10 expression, together with stimulation of ERK phosphorylation. Taken together, our study not only established a novel mouse model with spontaneous liposarcoma, but also revealed that IL-22 overexpression may collaborate with diet-induced obesity to impact on tumor development in mouse
    corecore