8,035 research outputs found

    Global Entanglement for Multipartite Quantum States

    Full text link
    Based on the residual entanglement [9] (Phys. Rev. A \textbf{71}, 044301 (2005)), we present the global entanglement for a multipartite quantum state. The measure is shown to be also obtained by the bipartite partitions of the multipartite state. The distinct characteristic of the global entanglement is that it consists of the sum of different entanglement contributions. The measure can provide sufficient and necessary condition of fully separability for pure states and be conveniently extended to mixed states by minimizing the convex hull. To test the sufficiency of the measure for mixed states, we evaluate the global entanglement of bound entangled states. The properties of the measure discussed finally show the global entanglement is an entanglement monotone.Comment: 6 page

    Concurrence of superposition

    Get PDF
    The bounds on concurrence of the superposition state in terms of those of the states being superposed are studied in this paper. The bounds on concurrence are quite different from those on the entanglement measure based on von Neumann entropy (Phys. Rev. Lett. 97, 100502 (2006)). In particular, a nonzero lower bound can be provided if the states being superposed are properly constrained.Comment: 4 page

    Formation of diluted III–V nitride thin films by N ion implantation

    Get PDF
    iluted III–Nₓ–V₁ˍₓ alloys were successfully synthesized by nitrogen implantation into GaAs,InP, and AlyGa1−yAs. In all three cases the fundamental band-gap energy for the ion beam synthesized III–Nₓ–V₁ˍₓ alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grownGaNₓAs1−x and InNₓP₁ˍₓalloys. In GaNₓAs₁ˍₓ the highest value of x (fraction of “active” substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850 °C. The highest value of x achieved in InNₓP₁ˍₓ was higher, 0.012, and the NP was found to be stable to at least 850 °C. In addition, the N activation efficiency in implantedInNₓP₁ˍₓ was at least a factor of 2 higher than that in GaNₓAs₁ˍₓ under similar processing conditions. AlyGa1−yNₓAs₁ˍₓ had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1−yNₓAs₁ˍₓalloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.This work was supported by the ‘‘Photovoltaic Materials Focus Area’’ in the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences under U.S. Department of Energy Contract No. DE-ACO3-76SF00098. The work at UCSD was partially supported by Midwest Research Institute under subcontractor No. AAD-9-18668-7 from NREL

    Effect of Native Defects on Optical Properties of InxGa1-xN Alloys

    Full text link
    The energy position of the optical absorption edge and the free carrier populations in InxGa1-xN ternary alloys can be controlled using high energy 4He+ irradiation. The blue shift of the absorption edge after irradiation in In-rich material (x > 0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical absorption measurements show that the irradiation-introduced native defects are inside the bandgap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model

    Reexamining the "finite-size" effects in isobaric yield ratios using a statistical abrasion-ablation model

    Full text link
    The "finite-size" effects in the isobaric yield ratio (IYR), which are shown in the standard grand-canonical and canonical statistical ensembles (SGC/CSE) method, is claimed to prevent obtaining the actual values of physical parameters. The conclusion of SGC/CSE maybe questionable for neutron-rich nucleus induced reaction. To investigate whether the IYR has "finite-size" effects, the IYR for the mirror nuclei [IYR(m)] are reexamined using a modified statistical abrasion-ablation (SAA) model. It is found when the projectile is not so neutron-rich, the IYR(m) depends on the isospin of projectile, but the size dependence can not be excluded. In reactions induced by the very neutron-rich projectiles, contrary results to those of the SGC/CSE models are obtained, i.e., the dependence of the IYR(m) on the size and the isospin of the projectile is weakened and disappears both in the SAA and the experimental results.Comment: 5 pages and 4 figure

    Effects of Residue Background Events in Direct Dark Matter Detection Experiments on the Determination of the WIMP Mass

    Full text link
    In the earlier work on the development of a model-independent data analysis method for determining the mass of Weakly Interacting Massive Particles (WIMPs) by using measured recoil energies from direct Dark Matter detection experiments directly, it was assumed that the analyzed data sets are background-free, i.e., all events are WIMP signals. In this article, as a more realistic study, we take into account a fraction of possible residue background events, which pass all discrimination criteria and then mix with other real WIMP-induced events in our data sets. Our simulations show that, for the determination of the WIMP mass, the maximal acceptable fraction of residue background events in the analyzed data sets of O(50) total events is ~20%, for background windows of the entire experimental possible energy ranges, or in low energy ranges; while, for background windows in relatively higher energy ranges, this maximal acceptable fraction of residue background events can not be larger than ~10%. For a WIMP mass of 100 GeV with 20% background events in the windows of the entire experimental possible energy ranges, the reconstructed WIMP mass and the 1-sigma statistical uncertainty are ~97 GeV^{+61%}_{-35%} (~94 GeV^{+55%}_{-33%} for background-free data sets).Comment: 27 pages, 22 eps figures; v2: revised version for publication, references added and update

    Local structures of free-standing AlₓGa₁ˍₓN thin films studied by extended x-ray absorption fine structure

    No full text
    Local structural information for the first two atomic shells surrounding Ga atoms in free standing AlₓGa₁ˍₓN alloy films has been obtained by extended x-ray absorption fine structure spectroscopy. For an AlN mole fraction ranging from 0 to 0.6, we found that the first shell Ga–N bond length had only a weak composition dependence, roughly one quarter of that predicted by Vegard’s Law. In the second shell, the Ga–Ga bond length was significantly longer than that of Ga–Al (Δ∌0.04–0.065 Å). A bond-type specific composition dependence was observed for the second shell cation–cation distances. While the composition dependence of the Ga–Ga bond length is ∌70% of that predicted by Vegard’s Law, the Ga–Al bond length was essentially composition independent. These results suggested that local strain in AlₓGa₁ˍₓN was also accommodated by lattice distortion in the Al cation sublattice.This work was supported by the Director, Office of Science, Of- fice of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The LLO work was performed at the UC Berkeley Integrated Materials Laboratory which was supported in part by the National Science Foundation. C.J.G. and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program. SSRL was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy

    Diluted II-VI Oxide Semiconductors with Multiple Band Gaps

    Full text link
    We report the realization of a new multi-band-gap semiconductor. The highly mismatched alloy Zn1-yMnyOxTe1-x has been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn1-yMnyTe host. When only 1.3% of Te atoms is replaced with oxygen in a Zn0.88Mn0.12Te crystal (with band gap of 2.32 eV) the resulting band structure consists of two direct band gaps with interband transitions at ~1.77 eV and 2.7 eV. This remarkable modification of the band structure is well described by the band anticrossing model in which the interactions between the oxygen-derived band and the conduction band are considered. With multiple band gaps that fall within the solar energy spectrum, Zn1-yMnyOxTe1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.Comment: 12 pages, 4 figure

    Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit

    Full text link
    We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters
    • 

    corecore