27,911 research outputs found
Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints
The Davey-Stewartson I equation is a typical integrable equation in 2+1
dimensions. Its Lax system being essentially in 1+1 dimensional form has been
found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the
present paper, this essentially 1+1 dimensional Lax system is further
nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann
constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems
are completely integrable in Liouville sense by finding a full set of integrals
of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001
Generalized r-matrix structure and algebro-geometric solution for integrable systems
The purpose of this paper is to construct a generalized r-matrix structure of
finite dimensional systems and an approach to obtain the algebro-geometric
solutions of integrable nonlinear evolution equations (NLEEs). Our starting
point is a generalized Lax matrix instead of usual Lax pair. The generalized
r-matrix structure and Hamiltonian functions are presented on the basis of
fundamental Poisson bracket. It can be clearly seen that various nonlinear
constrained (c-) and restricted (r-) systems, such as the c-AKNS, c-MKdV,
c-Toda, r-Toda, c-Levi, etc, are derived from the reduction of this structure.
All these nonlinear systems have {\it r}-matrices, and are completely
integrable in Liouville's sense. Furthermore, our generalized structure is
developed to become an approach to obtain the algebro-geometric solutions of
integrable NLEEs. Finally, the two typical examples are considered to
illustrate this approach: the infinite or periodic Toda lattice equation and
the AKNS equation with the condition of decay at infinity or periodic boundary.Comment: 41 pages, 0 figure
Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy
Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different
from the original ones. Binary nonlinearization procedure corresponding to the
Bargmann symmetry constraint is carried out for those Lax pairs. The proposed
Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of
commutative, finite dimensional integrable Hamiltonian systems in the Liouville
sense, which also provides us with new examples of finite dimensional
integrable Hamiltonian systems. A sort of involutive solutions to the
Kaup-Newell hierarchy are exhibited through the obtained finite dimensional
integrable systems and the general involutive system engendered by binary
nonlinearization is reduced to a specific involutive system generated by
mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento
The roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy
The reaction dynamics of axisymmetric deformed Mg + Mg
collisions have been investigated systematically by an isospin-dependent
quantum molecular dynamics (IDQMD) model. It is found that different
deformations and orientations result in apparently different properties of
reaction dynamics. We revealed that some observables such as nuclear stopping
power (), multiplicity of fragments, and elliptic flow are very sensitive to
the initial deformations and orientations. There exists an eccentricity scaling
of elliptic flow in central body-body collisions with different deformations.
In addition, the tip-tip and body-body configurations turn out to be two
extreme cases in central reaction dynamical process.Comment: 5 pages, 7 figures, to appear in Physical Review C (Rapid
Communication
Broadband RCS Reduction of Microstrip Patch Antenna Using Bandstop Frequency Selective Surface
In this article, a simple and effective approach is presented to reduce the Radar Cross Section (RCS) of microstrip patch antenna in ultra broad frequency band. This approach substitutes a metallic ground plane of a conventional patch antenna with a hybrid ground consisting of bandstop Frequency Selective Surface (FSS) cells with partial metallic plane. To demonstrate the validity of the proposed approach, the influence of different ground planes on antenna’s performance is investigated. Thus, a patch antenna with miniaturized FSS cells is proposed. The results suggest that this antenna shows 3dB RCS reduction almost in the whole out-of operating band within 1-20GHz for wide incident angles when compared to conventional antenna, while its radiation characteristics are sustained simultaneously. The reasonable agreement between the measured and the simulated results verifies the efficiency of the proposed approach. Moreover, this approach doesn’t alter the lightweight, low-profile, easy conformal and easy manufacturing nature of the original antenna and can be extended to obtain low-RCS antennas with metallic planes in broadband that are quite suitable for the applications which are sensitive to the variation of frequencies
- …