1,490 research outputs found
Outflow in global magnetohydrodynamics as a function of a passive inner boundary source
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106972/1/jgra50946.pd
Broad Absorption Line Variability in Radio-Loud Quasars
We investigate C IV broad absorption line (BAL) variability within a sample
of 46 radio-loud quasars (RLQs), selected from SDSS/FIRST data to include both
core-dominated (39) and lobe-dominated (7) objects. The sample consists
primarily of high-ionization BAL quasars, and a substantial fraction have large
BAL velocities or equivalent widths; their radio luminosities and
radio-loudness values span ~2.5 orders of magnitude. We have obtained 34 new
Hobby-Eberly Telescope (HET) spectra of 28 BAL RLQs to compare to earlier SDSS
data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for
a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs,
probing rest-frame timescales of ~80-6000 d (median 500 d). In general, only
modest changes in the depths of segments of absorption troughs are observed,
akin to those seen in prior studies of BAL RQQs. Also similar to previous
findings for RQQs, the RLQs studied here are more likely to display BAL
variability on longer rest-frame timescales. However, typical values of
|Delta_EW| and |Delta_EW|/ are about 40+/-20% lower for BAL RLQs when
compared with those of a timescale-matched sample of BAL RQQs. Optical
continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for
both RLQs and RQQs, continuum variability tends to be stronger on longer
timescales. BAL variability in RLQs does not obviously depend upon their radio
luminosities or radio-loudness values, but we do find tentative evidence for
greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL
variability within more edge-on (lobe-dominated) RLQs supports some geometrical
dependence to the outflow structure.Comment: 27 pages, 16 figures, 6 tables, accepted to MNRAS, full Appendix A at
http://www.macalester.edu/~bmille13/balrlqs.htm
The 2+1 Kepler Problem and Its Quantization
We study a system of two pointlike particles coupled to three dimensional
Einstein gravity. The reduced phase space can be considered as a deformed
version of the phase space of two special-relativistic point particles in the
centre of mass frame. When the system is quantized, we find some possibly
general effects of quantum gravity, such as a minimal distances and a foaminess
of the spacetime at the order of the Planck length. We also obtain a
quantization of geometry, which restricts the possible asymptotic geometries of
the universe.Comment: 59 pages, LaTeX2e, 9 eps figure
Bulk sediment parameters (CaCO3, TOC, >63µm) of Sites 1095, 1096, 1101 and coarse fraction analysis of Site 1095 (ODP Leg 178, Western Antarctic Peninsula)
Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity
We study the phase space structure and the quantization of a pointlike
particle in 2+1 dimensional gravity. By adding boundary terms to the first
order Einstein Hilbert action, and removing all redundant gauge degrees of
freedom, we arrive at a reduced action for a gravitating particle in 2+1
dimensions, which is invariant under Lorentz transformations and a group of
generalized translations. The momentum space of the particle turns out to be
the group manifold SL(2). Its position coordinates have non-vanishing Poisson
brackets, resulting in a non-commutative quantum spacetime. We use the
representation theory of SL(2) to investigate its structure. We find a
discretization of time, and some semi-discrete structure of space. An
uncertainty relation forbids a fully localized particle. The quantum dynamics
is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory
improve
(2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame
We formulate and analyze the Hamiltonian dynamics of a pair of massive
spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the
system to a conical infinity, isometric to the infinity generated by a single
massive but possibly spinning particle. The reduced phase space \Gamma_{red}
has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the
phase space of a Newtonian two-body system in the centre-of-mass frame, and we
find on \Gamma_{red} a canonical chart that makes this analogue explicit and
reduces to the Newtonian chart in the appropriate limit. Prospects for
quantization are commented on.Comment: 38 pages, REVTeX v3.1 with amsfonts and epsf, 12 eps figures. (v2:
Presentational improvement, references added, typos corrected.
Mechanical Instabilities of Biological Tubes
We study theoretically the shapes of biological tubes affected by various
pathologies. When epithelial cells grow at an uncontrolled rate, the negative
tension produced by their division provokes a buckling instability. Several
shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all
of which are found in pathologies of tracheal, renal tubes or arteries. The
final shape depends crucially on the mechanical parameters of the tissues :
Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since
tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey
information as to what causes the pathology. We calculate a phase diagram of
tubular instabilities which could be a helpful guide for investigating the
underlying genetic regulation
- …
