25 research outputs found

    Multiscale modelling of soft lattice metamaterials: micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour

    No full text
    Soft lattice structures and beam-metamaterials made of hyperelastic, rubbery materials undergo large elastic deformations and exhibit structural instabilities in the form of micro-buckling of struts under both compression and tension. In this work, the large-deformation nonlinear elastic behaviour of beam-lattice metamaterials is investigated by micromechanical nonlinear buckling analysis. The micromechanical 3D beam finite element model uses a primary linear buckling analysis to incorporate the effect of geometric imperfections into a subsequent nonlinear post-buckling analysis. The micromechanical computational model is validated against tensile and compressive experiments on a 3D-printed sample lattice structure manufactured via multi-material jetting. For the development and calibration of macroscale continuum constitutive models for nonlinear elastic deformation of soft lattice structures at finite strains, virtual characterization tests are conducted to quantify the effective nonlinear response of representative unit cells under periodic boundary conditions. These standard tests, commonly used for hyperelastic material characterization, include uniaxial, biaxial, planar and volumetric tension and compression, as well as simple shear. It is observed that besides the well-known stretch- and bending-dominated behaviour of cellular structures, some lattice types are dominated by buckling and post-buckling response. For multiscale simulation based on nonlinear homogenization, the uniaxial standard test results are used to derive parametric hyperelastic constitutive relations for the effective constitutive behaviour of representative unit cells in terms of lattice aspect ratio. Finally, a comparative study for compressive deformation of a sample sandwich lattice structure simulated by both full-scale beam and continuum finite element models shows the feasibility and computational efficiency of the effective continuum model

    Multiscale modelling of soft lattice metamaterials: micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour

    No full text
    Soft lattice structures and beam-metamaterials made of hyperelastic, rubbery materials undergo large elastic deformations and exhibit structural instabilities in the form of micro-buckling of struts under both compression and tension. In this work, the large-deformation nonlinear elastic behaviour of beam-lattice metamaterials is investigated by micromechanical nonlinear buckling analysis. The micromechanical 3D beam finite element model uses a primary linear buckling analysis to incorporate the effect of geometric imperfections into a subsequent nonlinear post-buckling analysis. The micromechanical computational model is validated against tensile and compressive experiments on a 3D-printed sample lattice structure manufactured via multi-material jetting. For the development and calibration of macroscale continuum constitutive models for nonlinear elastic deformation of soft lattice structures at finite strains, virtual characterization tests are conducted to quantify the effective nonlinear response of representative unit cells under periodic boundary conditions. These standard tests, commonly used for hyperelastic material characterization, include uniaxial, biaxial, planar and volumetric tension and compression, as well as simple shear. It is observed that besides the well-known stretch- and bending-dominated behaviour of cellular structures, some lattice types are dominated by buckling and post-buckling response. For multiscale simulation based on nonlinear homogenization, the uniaxial standard test results are used to derive parametric hyperelastic constitutive relations for the effective constitutive behaviour of representative unit cells in terms of lattice aspect ratio. Finally, a comparative study for compressive deformation of a sample sandwich lattice structure simulated by both full-scale beam and continuum finite element models shows the feasibility and computational efficiency of the effective continuum model

    Anti-pterins as tools to characterize the function of tetrahydrobiopterin in NO synthase

    No full text
    Nitric oxide synthases (NOS) are homodimeric enzymes that NADPH-dependently convert L-arginine to nitric oxide and L-citrulline. Interestingly, all NOS also require (6R)-5,6,7,8-tetrahydro-L-biopterin (H4Bip) for maximal activity although the mechanism is not fully understood. Basal NOS activity, i.e. that in the absence of exogenous H4Bip, has been attributed to enzyme-associated H4Bip. To elucidate further H4Bip function in purified NOS, we developed two types of pterin-based NOS inhibitors, termed anti-pterins. In contrast to type II anti-pterins, type I anti-pterins specifically displaced enzyme-associated H4Bip and inhibited H4Bip-stimulated NOS activity in a fully competitive manner but, surprisingly, had no effect on basal NOS activity. Moreover, for a number of different NOS preparations basal activity (percent of Vmax) was frequently higher than the percentage of pterin saturation and was not affected by preincubation of enzyme with H4Bip. Thus, basal NOS activity appeared to be independent of enzyme-associated H4Bip. The lack of intrinsic 4a-pterincarbinolamine dehydratase activity argued against classical H4Bip redox cycling in NOS. Rather, H4Bip was required for both maximal activity and stability of NOS by binding to the oxygenase/dimerization domain and preventing monomerization and inactivation during L-arginine turnover. Since anti-pterins were also effective in intact cells, they may become useful in modulating states of pathologically high nitric oxide formation
    corecore