9,660 research outputs found

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties

    Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene

    Get PDF
    Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density

    Is there Ornstein-Zernike equation in the canonical ensemble?

    Full text link
    A general density-functional formalism using an extended variable-space is presented for classical fluids in the canonical ensemble (CE). An exact equation is derived that plays the role of the Ornstein-Zernike (OZ) equation in the grand canonical ensemble (GCE). When applied to the ideal gas we obtain the exact result for the total correlation function h_N. For a homogeneous fluid with N particles the new equation only differs from OZ by 1/N and it allows to obtain an approximate expression for h_N in terms of its GCE counterpart that agrees with the expansion of h_N in powers of 1/N.Comment: 5 pages, RevTeX. Submitted to Phys. Rev. Let

    Development of a low cost, self-configuring ADCP and integrated deployment and recovery system

    Get PDF
    Here we present the development of a short range (0.5 to 20 m), low cost (< USD 5,000), three-beam, 1 MHz acoustic Doppler current profler called the Nortek ECO. The system employs a robust wideband velocity measurement technique where the only required user inputs are: 1) when deployment should start, 2) how often to sample, and 3) what is the water type. The hardware is highly portable, measuring only 130 mm tall by 85 mm in diameter and weighing 1.0 kg in air. It communicates externally with Bluetooth Low Energy technology and is powered by an embedded smart Li-Ion battery that is charged by induction. Three independent activation methods are implemented, including Near-Field Communication, and all communication controlled via a platform-independent Progressive Web App. Coupled with the ADCP is a deployment and recovery system allowing for single person operation at depths up to 50 m. Discussion of the system concept and design are presented, including sample data. This is an example for preparing the full paper that is identical with the extended summaries format. It must be written in Times New Roman.Peer Reviewe

    Demixing and orientational ordering in mixtures of rectangular particles

    Get PDF
    Using scaled-particle theory for binary mixtures of two-dimensional hard particles with rotational freedom, we analyse the stability of nematic phases and the demixing phase behaviour of a variety of mixtures, focussing on cases where at least one of the components consists of hard rectangles or hard squares. A pure fluid of hard rectangles may exhibit, aside from the usual uniaxial nematic phase, an additional (tetratic) oriented phase, possessing two directors, which is the analogue of the biaxial or cubatic phases in three- dimensional fluids. There is computer simulation evidence that the tetratic phase might be stable with respect to phases with spatial order for rectangles with low aspect ratios. As hard rectangles are mixed with other particles not possessing stable tetratic order by themselves, the tetratic phase is destabilised, via a first- or second-order phase transition, to uniaxial nematic or isotropic phases; for hard rectangles of low aspect ratio tetratic order persists in a relatively large range of volume fractions. The order of these transitions depends on the particle geometry, dimensions and thermodynamic conditions of the mixture. The second component of the mixture has been chosen to be hard discs or disco-rectangles, the geometry of which is different from that of rectangles, leading to packing frustration and demixing behaviour, or simply rectangles of different aspect ratio. These mixtures may be good candidates for observing thermodynamically stable tetratic phases in monolayers of hard particles. Finally, demixing between fluid (isotropic--tetratic or tetratic--tetratic) phases is seen to occur in mixtures of hard squares of different sizes when the size ratio is sufficiently large.Comment: 27 pages, 9 figure

    Combined current profiling and biological echosounding results from a single ADCP

    Get PDF
    The present work describes a newly-developed Acoustic Doppler Current Profiler (ADCP) that has a fully integrated single-beam wide-band biological echosounder, thus serving a dual purpose: current measurement and biomass assessment. The system comprises a traditional 4-beam Janus configuration head, which is responsible for profiling the currents, with a vertically oriented center beam for collecting high-resolution acoustic backscatter data for subsequent biomass analysis. The system belongs to the Signature Series family of ADCPs launched in 2013 by Norwegian scientific instrumentation company Nortek. Named Signature100, it is powered by the AD2CP electronics platform, described in United States Patent 7.911.880. The four slanted beams (current profiling beams) operate at a center frequency of 100 kHz and have a range of up to 400 m with 4 m spatial resolution and sampling rate up to 1 Hz. The center vertical beam (echosounding beam) has a wider frequency band of approximately 70-120 kHz with a high dynamic range (~130 dB), and presently operating in up to three discreet pulse characteristics from a single beam set: 1) 70 kHz monochromatic, 2) 120 kHz monochromatic, and 3) 91 kHz chirp with 50 percent bandwidth and pulse compression. Acoustic pulses from the echosounder beam are interweaved with pulses for the current profiling beam for synchronous data collection. In this work we describe the system’s configuration, capabilities and results from initial trials.paper that is identical with the extended summaries format.Peer Reviewe

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene

    Large Attractive Depletion Interactions in Soft Repulsive-Sphere Binary Mixtures

    Full text link
    We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit, and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed.Comment: 31 pages, 8 figures; version accepted for publication in the Journal of Chemical Physic
    • …
    corecore