12,827 research outputs found
Difference of optical conductivity between one- and two-dimensional doped nickelates
We study the optical conductivity in doped nickelates, and find the dramatic
difference of the spectrum in the gap (\alt4 eV) between one- (1D)
and two-dimensional (2D) nickelates. The difference is shown to be caused by
the dependence of hopping integral on dimensionality. The theoretical results
explain consistently the experimental data in 1D and
2D nickelates, YCaBaNiO and LaSrNiO,
respectively. The relation between the spectrum in the X-ray aborption
experiments and the optical conductivity in LaSrNiO is
discussed.Comment: RevTeX, 4 pages, 4 figure
Towards Quantitative Simulations of High Power Proton Cyclotrons
PSI operates a cyclotron based high intensity proton accelerator routinely at
an average beam power of 1.3MW. With this power the facility is at the
worldwide forefront of high intensity proton accelerators. The beam current is
practically limited by losses at extraction and the resulting activation of
accelerator components. Further intensity upgrades and new projects aiming at
an even higher average beam power, are only possible if the relative losses can
be lowered in proportion, thus keeping absolute losses at a constant level.
Maintaining beam losses at levels allowing hands-on maintenance is a primary
challenge in any high power proton machine design and operation. In
consequence, predicting beam halo at these levels is a great challenge and will
be addressed in this paper. High power hadron driver have being used in many
disciplines of science and, a growing interest in the cyclotron technology for
high power hadron drivers are being observed very recently. This report will
briefly introduce OPAL, a tool for precise beam dynamics simulations including
3D space charge. One of OPAL's flavors (OPAL-cycl) is dedicated to high power
cyclotron modeling and is explained in greater detail. We then explain how to
obtain initial conditions for our PSI Ring cyclotron which still delivers the
world record in beam power of 1.3 MW continuous wave (cw). Several crucial
steps are explained necessary to be able to predict tails at the level of
3\sigma ... 4\sigma in the PSI Ring cyclotron. We compare our results at the
extraction with measurements, obtained with a 1.18 MW cw production beam. Based
on measurement data, we develop a simple linear model to predict beam sizes of
the extracted beam as a function of intensities and confirm the model with
simulations.Comment: Corrections and new figur
Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement
Magnesium oxychloride (MOC) cement is featured with high early strength, low thermal conductivity and low density, but is not widely applied in construction engineering due to its poor water resistance capability. This research has studied the effect of phosphoric acid and tartaric acid additions on the water resistance of MOC cement pastes, in which also reports the effects on setting time, hydration reactions, compressive strength, phase composition, thermal stability and microstructure. 1 wt% of phosphoric acid and tartaric acid additions can improve the water resistance and reduce thermal stability of MOC cement pastes, which is associated with formation of gel-like 5Mg(OH) 2 ·MgCl 2 ·8H 2 O. Moreover, these additions reduce the compressive strength and prolong the setting time of MOC cement pastes, as well as increase the total porosity, the volume fraction of gel pores (100 nm), however, decrease the volume fraction of small capillary pores (10–100 nm) of MOC cement pastes. These effects are caused by both additives but are most pronounced for MOC cement pastes containing phosphoric acid. In addition, 2Mg(OH) 2 ·MgCl 2 ·2H 2 O is a transitional phase in the formative stage of 5Mg(OH) 2 ·MgCl 2 ·8H 2 O in MOC cement
Comments on photonic shells
We investigate in detail the special case of an infinitely thin static
cylindrical shell composed of counter-rotating photons on circular geodetical
paths separating two distinct parts of Minkowski spacetimes--one inside and the
other outside the shell--and compare it to a static disk shell formed by null
particles counter-rotating on circular geodesics within the shell located
between two sections of flat spacetime. One might ask whether the two cases are
not, in fact, merely one
The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6
We examine the evolution of the IGM Ly-alpha optical depth distribution using
the transmitted flux probability distribution function (PDF) in a sample of 63
QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two
theoretical optical depth distributions: a model distribution based on the
density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal
distribution. We assume a uniform UV background and an isothermal IGM for the
MHR00 model, as has been done in previous works. Under these assumptions, the
MHR00 model produces poor fits to the observed flux PDFs at redshifts where the
optical depth distribution is well sampled, unless large continuum corrections
are applied. However, the lognormal optical depth distribution fits the data at
all redshifts with only minor continuum adjustments. We use a simple
parametrization for the evolution of the lognormal parameters to calculate the
expected mean transmitted flux at z > 5.4. The lognormal optical depth
distribution predicts the observed Ly-alpha and Ly-beta effective optical
depths at z > 5.7 while simultaneously fitting the mean transmitted flux down
to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a
slowly-evolving density field, temperature, and UV background, then no sudden
change in the IGM at z ~ 6 due to late reionization appears necessary. We have
used the lognormal optical depth distribution without any assumption about the
underlying density field. If the MHR00 density distribution is correct, then a
non-uniform UV background and/or IGM temperature may be required to produce the
correct flux PDF. We find that an inverse temperature-density relation greatly
improves the PDF fits, but with a large scatter in the equation of state index.
[Abridged]Comment: 45 pages, 16 figures, submitted to Ap
Exact Relativistic Static Charged Dust Disks and Non-axisymmetric Structures
The well-known ``displace, cut and reflect'' method used to generate disks
from given solutions of Einstein field equations is applied to the
superposition of twoextreme Reissner-Nordstrom black holes to construct disks
made of charged dust and alsonon-axisymmetric planar distributions of charged
dust on the z=0 plane. They are symmetric with respect to twoor one coordinate
axes, depending whether the black holes have equal or unequal masses,
respectively.For these non-axisymmetric distributions of matter we also study
the effective potential for geodesic motion of neutral test particles.Comment: Classical and Quantum Gravity (in press). 15 pages, LaTex, 8 .eps
fig
Generalised Kundt waves and their physical interpretation
We present the complete family of space-times with a non-expanding,
shear-free, twist-free, geodesic principal null congruence (Kundt waves) that
are of algebraic type III and for which the cosmological constant ()
is non-zero. The possible presence of an aligned pure radiation field is also
assumed. These space-times generalise the known vacuum solutions of type N with
arbitrary and type III with . It is shown that there
are two, one and three distinct classes of solutions when is
respectively zero, positive and negative. The wave surfaces are plane,
spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter
backgrounds respectively, and the structure of the family of wave surfaces in
the background space-time is described. The weak singularities which occur in
these space-times are interpreted in terms of envelopes of the wave surfaces.Comment: 16 pages including 2 figures. To appear in Classical and Quantum Gra
- …