21 research outputs found

    Structure analysis of carboxymethyl starch by capillary electrophoresis and enzymic degradation

    No full text
    Carboxymethyl starches (CMS) with a degree of substitution (DS) in the range of 1.2 to 1.5 were analysed by capillary electrophoresis (CE) after hydrolysis and reductive amination in a borate buffer. The monomer composition determined was compared to data calculated by the statistical models of Spurlin and Reuben. In addition, the starch derivatives were exhaustively degraded by alpha-amylase and amyloglucosiclase and the amount of glucose liberated was determined. Results were discussed with regard to derivatisation conditions and properties of the carboxymethyl starches

    Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels

    Full text link
    The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)-deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma

    Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha.

    No full text
    DNA-based immunization strategies designed to elicit cellular antitumor immunity offer an attractive alternative to protein- or peptide-based approaches. In the present study we have evaluated the feasibility of DNA vaccination for the induction of CTL reactivity to five different melanoma Ags in vitro. Cultured, monocyte-derived dendritic cells (DC) were transiently transfected with plasmid DNA encoding human MART-1/Melan-A, pMel-17/gp100, tyrosinase, MAGE-1, or MAGE-3 by particle bombardment and used to stimulate autologous PBMC responder T cells. CTL reactivity to these previously identified melanoma Ags was reproducibly generated after two or three stimulations with genetically modified DC. Co-ordinate transfection of two melanoma Ag cDNAs into DC promoted CTL responders capable of recognizing epitopes from both gene products. Coinsertion of genes encoding the Th1-biasing cytokines IL-12 or IFN-alpha consistently enhanced the magnitude of the resulting Ag-specific CTL reactivity. Importantly, DC transfected with a single melanoma Ag cDNA were capable of stimulating Ag-specific CTL reactivity restricted by multiple host MHC alleles, some of which had not been previously identified. These results support the inherent strengths of gene-based vaccine approaches that do not require prior knowledge of responder MHC haplotypes or of relevant MHC-restricted peptide epitopes. Given previous observations of in situ tumor HLA allele-loss variants, DC gene vaccine strategies may elicit a greater diversity of host therapeutic immunity, thereby enhancing the clinical utility and success of such approaches

    Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine.

    No full text
    Item does not contain fulltextIn situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo. Furthermore, CD40 targeting improved the induction of specific CD8(+) T cells along with therapeutic efficacy in a mouse model of melanoma. Taken together, our findings support the use of CD40-targeted Ad vectors encoding full-length TAA for in vivo targeting of DCs and high-efficacy induction of antitumor immunity

    Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus.

    No full text
    Cutaneous lupus erythematosus (CLE) is a chronic autoimmune disease of the skin with typical clinical manifestations. Here, we genotyped 906 600 single nucleotide polymorphisms (SNPs) in 183 CLE cases and 1288 controls of Central European ancestry. Replication was performed for 13 SNPs in 219 case subjects and 262 controls from Finland. Association was particularly pronounced at 4 loci, all with genomewide significance (P < 5 × 10(-8) ): rs2187668 (PGWAS  = 1.4 × 10(-12) ), rs9267531 (PGWAS  = 4.7 × 10(-10) ), rs4410767 (PGWAS  = 1.0 × 10(-9) ) and rs3094084 (PGWAS  = 1.1 × 10(-9) ). All mentioned SNPs are located within the major histocompatibility complex (MHC) region of chromosome 6 and near genes of known immune functions or associations with other autoimmune diseases such as HLA-DQ alpha chain 1 (HLA-DQA1), MICA, MICB, MSH5, TRIM39 and RPP21. For example, TRIM39/RPP21 read through transcript is a known mediator of the interferon response, a central pathway involved in the pathogenesis of CLE and systemic lupus erythematosus (SLE). Taken together, this genomewide analysis of disease association of CLE identified candidate genes and genomic regions that may contribute to pathogenic mechanisms in CLE via dysregulated antigen presentation (HLA-DQA1), apoptosis regulation, RNA processing and interferon response (MICA, MICB, MSH5, TRIM39 and RPP21)

    Adeno-Associated Virus Type 2-Mediated Transduction of Human Monocyte-Derived Dendritic Cells: Implications for Ex Vivo Immunotherapy

    No full text
    Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies

    Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy

    No full text
    Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T\ua0cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T\ua0cell infiltration in tumors. This therapeutic effect was independent of\ua0tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition,\ua0neutrophils recruited to T\ua0cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T\ua0cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the\ua0HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors
    corecore