73 research outputs found

    TRAPEDS: Producing Traces for Multicomputers via Execution-Driven Simulation

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Aeronautics and Space Administration / NASA NAG-1-613Shell Doctoral FellowshipDigital Faculty Incentives for Excellence Awar

    E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton's Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants

    Get PDF
    10.1371/journal.pone.0163035PloS one119e0163035GUSTO (Growing up towards Healthy Outcomes

    The 3' region of Human Papillomavirus type 16 early mRNAs decrease expression

    Get PDF
    BACKGROUND: High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer cell lines the HR-HPV double stranded DNA genome has been integrated into the host cell genome. METHODS: We have used a retroviral GUS reporter system to generate pools of stably transfected HaCaT and SiHa cells. The HPV-16 early sequences that are deleted upon integration of the HPV-16 genome was inserted into the 3' UTR of the reporter mRNA. Pools containing thousands of independent integrations were tested for the steady state levels of the reporter mRNA by Real Time PCR and reporter protein by a GUS enzymatic activity assays. In addition, we tested the cellular distribution and half lives of the reporter mRNAs. The integrity of the reporter mRNAs were tested by northern blotting. RESULTS: We show that the 3' region of the HPV-16 early mRNAs (HPV-16 nucleotide (nt.) 2582–4214) act in cis to decrease both mRNA and protein levels. This region seems to affect transcription from the exogenous minimal CMV promoter or processing of the reporter mRNA. The observed repression was most pronounced at the protein level, suggesting that this sequence may also affect translation. For the HPV types: 2, 6, 11, 13, 18, 30, 31, and 35 we have investigated the regulatory effect of the regions corresponding to the HPV-16 nt. 3358–4214. For all types, except HPV-18, the region was found to repress expression by posttranscriptional mechanisms. CONCLUSION: We find that the 3' region of HPV-16 early mRNAs interfere with gene expression. It is therefore possible that the deletion of the 3' part of early HPV-16 mRNAs occurring during cervical oncogenesis could contribute to transformation of cells through deregulation of the viral oncogene synthesis. Moreover, we find that the corresponding region from several other HPV types also repress expression, suggesting that the repression by this region may be a general feature of the HPV life cycle

    SMAR1 binds to T(C/G) repeatvand inhibits tumor progression by regulating miR-371-373 cluster

    Get PDF
    Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIPsequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-37

    Inverse Association between Methylation of Human Papillomavirus Type 16 DNA and Risk of Cervical Intraepithelial Neoplasia Grades 2 or 3

    Get PDF
    The clinical relevance of human papillomavirus type 16 (HPV16) DNA methylation has not been well documented, although its role in modulation of viral transcription is recognized.Study subjects were 211 women attending Planned Parenthood clinics in Western Washington for routine Papanicolaou screening who were HPV16 positive at the screening and/or subsequent colposcopy visit. Methylation of 11 CpG dinucleotides in the 3' end of the long control region of the HPV16 genome was examined by sequencing the cloned polymerase chain reaction products. The association between risk of CIN2/3 and degree of CpG methylation was estimated using a logistic regression model.CIN2/3 was histologically confirmed in 94 (44.5%) of 211 HPV16 positive women. The likelihood of being diagnosed as CIN2/3 increased significantly with decreasing numbers of methylated CpGs (meCpGs) in the 3' end of the long control region (P(for trend) = 0.003). After adjusting for HPV16 variants, number of HPV16-positive visits, current smoking status and lifetime number of male sex partners, the odds ratio for the association of CIN2/3 with ≥4 meCpGs was 0.31 (95% confidence interval, 0.12-0.79). The proportion of ≥4 meCpGs decreased appreciably as the severity of the cervical lesion increased (P(for trend) = 0.001). The inverse association remained similar when CIN3 was used as the clinical endpoint. Although not statistically significant, the ≥4 meCpGs-related risk reduction was more substantial among current, as compared to noncurrent, smokers.Results suggest that degree of the viral genome methylation is related to the outcome of an HPV16 cervical infection

    HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome.

    Get PDF
    In cervical squamous cell carcinomas, high-risk human papillomavirus (HRHPV) DNA is usually integrated into host chromosomes. Multiple integration events are thought to be present within the cells of a polyclonal premalignant lesion and the features that underpin clonal selection of one particular integrant remain poorly understood. We previously used the W12 model system to generate a panel of cervical keratinocyte clones, derived from cells of a low-grade premalignant lesion naturally infected with the major HRHPV type, HPV16. The cells were isolated regardless of their selective advantage and differed only by the site of HPV16 integration into the host genome. We used this resource to test the hypothesis that levels of HPV16 E6/E7 oncogene expression in premalignant cells are regulated epigenetically. We performed a comprehensive analysis of the epigenetic landscape of the integrated HPV16 DNA in selected clones, in which levels of virus oncogene expression per DNA template varied ~6.6-fold. Across the cells examined, higher levels of virus expression per template were associated with more open chromatin at the HPV16 long control region, together with greater loading of chromatin remodelling enzymes and lower nucleosome occupancy. There were higher levels of histone post-translational modification hallmarks of transcriptionally active chromatin and lower levels of repressive hallmarks. There was greater abundance of the active/elongating form of the RNA polymerase-II enzyme (RNAPII-Ser2P), together with CDK9, the component of positive transcription elongation factor b complex responsible for Ser2 phosphorylation. The changes observed were functionally significant, as cells with higher HPV16 expression per template showed greater sensitivity to depletion and/or inhibition of histone acetyltransferases and CDK9 and less sensitivity to histone deacetylase inhibition. We conclude that virus gene expression per template following HPV16 integration is determined through multiple layers of epigenetic regulation, which are likely to contribute to selection of individual cells during cervical carcinogenesis.This work was supported by Cancer Research UK (Programme Grant A13080); the Medical Research Council; The Pathological Society of Great Britain and Ireland (E.L.A.K.); and the Agency for Science, Technology and Research, Singapore (Q.Y.A).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/onc.2016.
    corecore