38 research outputs found

    Unlike for Human Monocytes after LPS Activation, Release of TNF-α by THP-1 Cells Is Produced by a TACE Catalytically Different from Constitutive TACE

    Get PDF
    Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α.Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation.On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS

    Rapid Internalization of the Oncogenic K+ Channel KV10.1

    Get PDF
    KV10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by KV10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, KV10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling KV10.1 intracellular distribution and life cycle. To follow plasma membrane KV10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected KV10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that KV10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal KV10.1 surface levels. Brief KV10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against KV10.1 on tumor cells

    Apical endocytosis in Caco-2 cells

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D199900 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Post-Golgi trafficking of TNF-a in macrophages

    No full text

    Protein kinase C regulates endocytosis and recycling of E-cadherin

    No full text
    E-cadherin is a major component of adherens junctions in epithelial cells. We showed previously that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. In the present study, we investigated the potential role of protein kinase C (PKC) in regulating the trafficking of surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cells with phorbol esters increased the rate of endocytosis of E-cadherin, resulting in accumulation of E-cadherin in apically localized early or recycling endosomes. The recycling of E-cadherin back to the surface was also decreased in the presence of phorbol esters. Phorbol ester-induced endocytosis of E-cadherin was blocked by specific inhibitors, implicating novel PKC isozymes, such as PKC-epsilon in this pathway. PKC activation led to changes in the actin cytoskeleton facilitating E-cadherin endocytosis. Depolymerization of actin increased endocytosis of E-cadherin, whereas the PKC-induced uptake of E-cadherin was blocked by the actin stabilizer jasplakinolide. Our findings show that PKC regulates vital steps of E-cadherin trafficking, its endocytosis, and its recycling
    corecore