14,978 research outputs found
Localized Asymmetric Atomic Matter Waves in Two-Component Bose-Einstein Condensates Coupled with Two Photon Microwave Field
We investigate localized atomic matter waves in two-component Bose-Einstein
condensates coupled by the two photon microwave field. Interestingly, the
oscillations of localized atomic matter waves will gradually decay and finally
become non-oscillating behavior even if existing coupling field. In particular,
atom numbers occupied in two different hyperfine spin states will appear
asymmetric occupations after some time evolution.Comment: 4 pages, 4 figure
A High Reliability Asymptotic Approach for Packet Inter-Delivery Time Optimization in Cyber-Physical Systems
In cyber-physical systems such as automobiles, measurement data from sensor
nodes should be delivered to other consumer nodes such as actuators in a
regular fashion. But, in practical systems over unreliable media such as
wireless, it is a significant challenge to guarantee small enough
inter-delivery times for different clients with heterogeneous channel
conditions and inter-delivery requirements. In this paper, we design scheduling
policies aiming at satisfying the inter-delivery requirements of such clients.
We formulate the problem as a risk-sensitive Markov Decision Process (MDP).
Although the resulting problem involves an infinite state space, we first prove
that there is an equivalent MDP involving only a finite number of states. Then
we prove the existence of a stationary optimal policy and establish an
algorithm to compute it in a finite number of steps.
However, the bane of this and many similar problems is the resulting
complexity, and, in an attempt to make fundamental progress, we further propose
a new high reliability asymptotic approach. In essence, this approach considers
the scenario when the channel failure probabilities for different clients are
of the same order, and asymptotically approach zero. We thus proceed to
determine the asymptotically optimal policy: in a two-client scenario, we show
that the asymptotically optimal policy is a "modified least time-to-go" policy,
which is intuitively appealing and easily implementable; in the general
multi-client scenario, we are led to an SN policy, and we develop an algorithm
of low computational complexity to obtain it. Simulation results show that the
resulting policies perform well even in the pre-asymptotic regime with moderate
failure probabilities
Lattice Boltzmann Approach to High-Speed Compressible Flows
We present an improved lattice Boltzmann model for high-speed compressible
flows. The model is composed of a discrete-velocity model by Kataoka and
Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate
finite-difference scheme combined with an additional dissipation term. With the
dissipation term parameters in the model can be flexibly chosen so that the von
Neumann stability condition is satisfied. The influence of the various model
parameters on the numerical stability is analyzed and some reference values of
parameter are suggested. The new scheme works for both subsonic and supersonic
flows with a Mach number up to 30 (or higher), which is validated by well-known
benchmark tests. Simulations on Riemann problems with very high ratios
() of pressure and density also show good accuracy and stability.
Successful recovering of regular and double Mach shock reflections shows the
potential application of the lattice Boltzmann model to fluid systems where
non-equilibrium processes are intrinsic. The new scheme for stability can be
easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear
Precision Measurement of the Spin-Dependent Asymmetry in the Threshold Region of ^3He(e, e')
We present the first precision measurement of the spin-dependent asymmetry in the threshold region of ^3He(e,e′) at Q^2 values of 0.1 and 0.2(GeV/c)^2. The agreement between the data and nonrelativistic Faddeev calculations which include both final-state interactions and meson-exchange current effects is very good at Q^2 = 0.1(GeV/c)^2, while a small discrepancy at Q^2 = 0.2(GeV/c)^2 is observed
- …