7,711 research outputs found

    Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages

    Full text link
    In this paper, the scheme of quantum computing based on Stark chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement the quantum-state manipulations in the flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark-shifts. Then, assisted by various transition pulses universal quantum logic gates as well as arbitrary quantum-state preparations could be implemented. Compared with the usual PI-pulses operations widely used in the experiments, the adiabatic population passage proposed here is insensitive the details of the applied pulses and thus the desirable population transfers could be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods

    Evolution of In-Plane Magnetic Anisotropy In Sputtered FeTaN/TaN/FeTaN Sandwich Films

    Full text link
    FeTaN/TaN/FeTaN sandwich films, FeTaN/TaN and TaN/FeTaN bilayers were synthesized by using RF magnetron sputtering. The magnetic properties, crystalline structures, microstructures and surface morphologies of the as-deposited samples were characterized using angle-resolved M-H loop tracer, VSM, XRD, TEM, AES and AFM. An evolution of the in-plane anisotropy was observed with the changing thickness of the nonmagnetic TaN interlayer in the FeTaN/TaN/FeTaN sandwiches, such as the easy-hard axis switching and the appearing of biaxial anisotropy. It is ascribed to three possible mechanisms, which are interlayer magnetic coupling, stress, and interface roughness, respectively. Interlayer coupling and stress anisotropies may be the major reasons to cause the easy-hard axis switching in the sandwiches. Whereas, magnetostatic and interface anisotropies may be the major reasons to cause biaxial anisotropy in the sandwiches, in which magnetostatic anisotropy is the dominant one.Comment: 6 pages, 3 figure

    The Anomalous Magnetic Moment of the Muon and Higgs-Mediated Flavor Changing Neutral Currents

    Full text link
    In the two-Higgs doublet extension of the standard model, flavor-changing neutral couplings arise naturally. In the lepton sector, the largest such coupling is expected to be $\mu-\tau-\phi#. We consider the effects of this coupling on the anomalous magnetic moment of the muon. The resulting bound on the coupling, unlike previous bounds, is independent of the value of other unknown couplings. It will be significantly improved by the upcoming E821 experiment at Brookhaven National Lab.Comment: 7 pages Latex, 2 figure

    Model of coarsening and vortex formation in vibrated granular rods

    Full text link
    Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled system of equations for local rods density and tilt. The density evolution is described by modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Evolution of superconductivity by oxygen annealing in FeTe0.8S0.2

    Full text link
    Oxygen annealing dramatically improved the superconducting properties of solid-state-reacted FeTe0.8S0.2, which showed only a broad onset of superconducting transition just after the synthesis. The zero resistivity appeared and reached 8.5 K by the oxygen annealing at 200\degree C. The superconducting volume fraction was also enhanced from 0 to almost 100%. The lattice constants were compressed by the oxygen annealing, indicating that the evolution of bulk superconductivity in FeTe0.8S0.2 was correlated to the shrinkage of lattice.Comment: 13 pages, 6 figure

    Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution

    Get PDF
    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration
    corecore