1,134 research outputs found

    Coframe teleparallel models of gravity. Exact solutions

    Get PDF
    The superstring and superbrane theories which include gravity as a necessary and fundamental part renew an interest to alternative representations of general relativity as well as the alternative models of gravity. We study the coframe teleparallel theory of gravity with a most general quadratic Lagrangian. The coframe field on a differentiable manifold is a basic dynamical variable. A metric tensor as well as a metric compatible connection is generated by a coframe in a unique manner. The Lagrangian is a general linear combination of Weitzenb\"{o}ck's quadratic invariants with free dimensionless parameters \r_1,\r_2,\r_3. Every independent term of the Lagrangian is a global SO(1,3)-invariant 4-form. For a special choice of parameters which confirms with the local SO(1,3) invariance this theory gives an alternative description of Einsteinian gravity - teleparallel equivalent of GR. We prove that the sign of the scalar curvature of a metric generated by a static spherical-symmetric solution depends only on a relation between the free parameters. The scalar curvature vanishes only for a subclass of models with \r_1=0. This subclass includes the teleparallel equivalent of GR. We obtain the explicit form of all spherically symmetric static solutions of the ``diagonal'' type to the field equations for an arbitrary choice of free parameters. We prove that the unique asymptotic-flat solution with Newtonian limit is the Schwarzschild solution that holds for a subclass of teleparallel models with \r_1=0. Thus the Yang-Mills-type term of the general quadratic coframe Lagrangian should be rejected.Comment: 28 pages, Latex error is fixe

    Lower limb stiffness and maximal sprint speed in 11-16-year-old boys

    Get PDF
    The purpose of the study was to examine the relationship between vertical stiffness, leg stiffness and maximal sprint speed in a large cohort of 11-16-year-old boys. Three-hundred and thirty-six boys undertook a 30 m sprint test using a floor-level optical measurement system, positioned in the final 15 m section. Measures of speed, step length, step frequency, contact time and flight time were directly measured whilst force, displacement, vertical stiffness and leg stiffness, were modeled from contact and flight times, from the two fastest consecutive steps for each participant over two trials. All force, displacement and stiffness variables were significantly correlated with maximal sprint speed (p 0.7) relationship with sprint speed, while vertical center of mass displacement, absolute vertical stiffness, relative peak force, and maximal leg spring displacement had large (r > 0.5) relationships. Relative vertical stiffness and relative peak force did not significantly change with advancing age (p > 0.05), but together with maximal leg spring displacement accounted for 96% of the variance in maximal speed. It appears that relative vertical stiffness and relative peak force are important determinants of sprint speed in boys aged 11-16 years, but are qualities that may need to be trained due to no apparent increases from natural development. Practitioners may wish to utilize training modalities such as plyometrics and resistance training to enable adaptation to these qualities due to their importance as predictors of speed in youth

    Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor

    Full text link
    In the framework of spacetime with torsion and without curvature, the Dirac particle spin precession in the rotational system is studied. We write out the equivalent tetrad of rotating frame, in the polar coordinate system, through considering the relativistic factor, and the resultant equivalent metric is a flat Minkowski one. The obtained rotation-spin coupling formula can be applied to the high speed rotating case, which is consistent with the expectation.Comment: 6 page

    On a class of invariant coframe operators with application to gravity

    Get PDF
    Let a differential 4D-manifold with a smooth coframe field be given. Consider the operators on it that are linear in the second order derivatives or quadratic in the first order derivatives of the coframe, both with coefficients that depend on the coframe variables. The paper exhibits the class of operators that are invariant under a general change of coordinates, and, also, invariant under the global SO(1,3)-transformation of the coframe. A general class of field equations is constructed. We display two subclasses in it. The subclass of field equations that are derivable from action principles by free variations and the subclass of field equations for which spherical-symmetric solutions, Minkowskian at infinity exist. Then, for the spherical-symmetric solutions, the resulting metric is computed. Invoking the Geodesic Postulate, we find all the equations that are experimentally (by the 3 classical tests) indistinguishable from Einstein field equations. This family includes, of course, also Einstein equations. Moreover, it is shown, explicitly, how to exhibit it. The basic tool employed in the paper is an invariant formulation reminiscent of Cartan's structural equations. The article sheds light on the possibilities and limitations of the coframe gravity. It may also serve as a general procedure to derive covariant field equations

    Stochastic Gravity

    Get PDF
    Gravity is treated as a stochastic phenomenon based on fluctuations of the metric tensor of general relativity. By using a (3+1) slicing of spacetime, a Langevin equation for the dynamical conjugate momentum and a Fokker-Planck equation for its probability distribution are derived. The Raychaudhuri equation for a congruence of timelike or null geodesics leads to a stochastic differential equation for the expansion parameter θ\theta in terms of the proper time ss. For sufficiently strong metric fluctuations, it is shown that caustic singularities in spacetime can be avoided for converging geodesics. The formalism is applied to the gravitational collapse of a star and the Friedmann-Robertson-Walker cosmological model. It is found that owing to the stochastic behavior of the geometry, the singularity in gravitational collapse and the big-bang have a zero probability of occurring. Moreover, as a star collapses the probability of a distant observer seeing an infinite red shift at the Schwarzschild radius of the star is zero. Therefore, there is a vanishing probability of a Schwarzschild black hole event horizon forming during gravitational collapse.Comment: Revised version. Eq. (108) has been modified. Additional comments have been added to text. Revtex 39 page

    Axial-Vector Torsion and the Teleparallel Kerr Spacetime

    Get PDF
    In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus the responsible for the Lense-Thirring effect.Comment: 9 pages, no figures, to appear in Class. Quant. Gra

    Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation

    Full text link
    We present a simple method to derive the semiclassical equations of motion for a spinning particle in a gravitational field. We investigate the cases of classical, rotating particles (pole-dipole particles), as well as particles with intrinsic spin. We show that, starting with a simple Lagrangian, one can derive equations for the spin evolution and momentum propagation in the framework of metric theories of gravity and in theories based on a Riemann-Cartan geometry (Poincare gauge theory), without explicitly referring to matter current densities (spin and energy-momentum). Our results agree with those derived from the multipole expansion of the current densities by the conventional Papapetrou method and from the WKB analysis for elementary particles.Comment: 28 page
    corecore