51 research outputs found

    Discord of response

    Full text link
    The presence of quantum correlations in a quantum state is related to the state response to local unitary perturbations. Such response is quantified by the distance between the unperturbed and perturbed states, minimized with respect to suitably identified sets of local unitary operations. In order to be a bona fide measure of quantum correlations, the distance function must be chosen among those that are contractive under completely positive and trace preserving maps. The most relevant instances of such physically well behaved metrics include the trace, the Bures, and the Hellinger distance. To each of these metrics one can associate the corresponding discord of response, namely the trace, or Hellinger, or Bures minimum distance from the set of unitarily perturbed states. All these three discords of response satisfy the basic axioms for a proper measure of quantum correlations. In the present work we focus in particular on the Bures distance, which enjoys the unique property of being both Riemannian and contractive under completely positive and trace preserving maps, and admits important operational interpretations in terms of state distinguishability. We compute analytically the Bures discord of response for two-qubit states with maximally mixed marginals and we compare it with the corresponding Bures geometric discord, namely the geometric measure of quantum correlations defined as the Bures distance from the set of classically correlated quantum states. Finally, we investigate and identify the maximally quantum correlated two-qubit states according to the Bures discord of response. These states exhibit a remarkable nonlinear dependence on the global state purity.Comment: 10 pages, 2 figures. Improved and expanded version, to be published in J. Phys. A: Math. Ge

    Geometric measures of quantum correlations : characterization, quantification, and comparison by distances and operations

    Get PDF
    We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. These two measures thus provide the first instance of discords that are simultaneously fully computable, reliable (since they satisfy all the basic Axioms that must be obeyed by a proper measure of quantum correlations), and operationally viable (in terms of state distinguishability). We apply the general mathematical structure to determine the closest classical-quantum state of a given state and the maximally quantum-correlated states at fixed global state purity according to the different distances, as well as a necessary condition for a channel to be quantumness breaking

    The Dynamical Additivity And The Strong Dynamical Additivity Of Quantum Operations

    Full text link
    In the paper, the dynamical additivity of bi-stochastic quantum operations is characterized and the strong dynamical additivity is obtained under some restrictions.Comment: 9 pages, LaTeX, change the order of name

    Quantifying nonclassicality: global impact of local unitary evolutions

    Full text link
    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize this type of global quantum effect. Finally, we show that similar results hold when replacing the Hilbert-Schmidt norm with the trace norm.Comment: 5 pages, 1 figure. To appear in Physical Review

    Notes on entropic characteristics of quantum channels

    Full text link
    One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the qq-average output entropy of degree q1q\geq1 is bounded from above by the qq-entropy of the input density matrix. Concavity properties of the (q,s)(q,s)-entropy exchange are considered. Fano type quantum bounds on the (q,s)(q,s)-entropy exchange are derived. We also give upper bounds on the map (q,s)(q,s)-entropies in terms of the output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly illustrated with the depolarizing channel. The bibliography is extended and updated. More explanations. To be published in Cent. Eur. J. Phy

    Characterising two-sided quantum correlations beyond entanglement via metric-adjusted f-correlations

    Full text link
    We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quantum ff-correlations' are defined as the maximum metric-adjusted ff-correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum ff-correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner-Yanase-Dyson skew informations.Comment: 20 pages, 1 figure. Published versio

    Selfcomplementary Quantum Channels

    Full text link

    Relations for certain symmetric norms and anti-norms before and after partial trace

    Full text link
    Changes of some unitarily invariant norms and anti-norms under the operation of partial trace are examined. The norms considered form a two-parametric family, including both the Ky Fan and Schatten norms as particular cases. The obtained results concern operators acting on the tensor product of two finite-dimensional Hilbert spaces. For any such operator, we obtain upper bounds on norms of its partial trace in terms of the corresponding dimensionality and norms of this operator. Similar inequalities, but in the opposite direction, are obtained for certain anti-norms of positive matrices. Through the Stinespring representation, the results are put in the context of trace-preserving completely positive maps. We also derive inequalities between the unified entropies of a composite quantum system and one of its subsystems, where traced-out dimensionality is involved as well.Comment: 11 pages, no figures. A typo error in Eq. (5.15) is corrected. Minor improvements. J. Stat. Phys. (in press
    corecore