60 research outputs found
Studies of the Precambrian Geology of Iowa: Part 3. Geochronologic data for the Matlock drill holes
U-Pb ages have been determined for quartz monzodiorite (2,535 ± 5Ma) recovered from drill hole ClO and for keratophyre (1,782±10 Ma) recovered from drill hole C5 of the Matlock exploration project. Sm-Nd whole-rock analyses for several rock types from the Otter Creek layered mafic complex recovered from several drill holes of the Matlock project yield an isochron age of 2,890 ± 90 Ma, with an ϵNd(t) of -0.9 ± 2.4. These ages document crustal evolution in northwest Iowa, including the southern margin of the Superior Province, over more than one billion years from 2.9 to 1.8 Ga. Isotopic data also show that older crustal components were involved in genesis of the keratophyre, indicating that it was derived wholly or in part from older crust. Data are not sufficient to determine if the keratophyre was derived wholly from mafic crust like the Otter Creek complex or from a mixture of more felsic Archean crust and juvenile 1.8 Ga magmas
Magnesium isotope evidence that accretional vapour loss shapes planetary compositions
It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion1 or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3, 4, 5, 6. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism
The midcontinent rift system
Annual Review of Earth and Planetary Sciences http://arjournals.annualreviews.org/loi/eart
Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology
The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the Sao Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information. Paleoproterozoic gneisses with ages of 2.0-2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U-Pb zircon ages of 995-960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeu terrane. Sm-Nd model ages in metaigneous rocks cluster about 1.3-1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Pianco-Alto Brigida terrane, and they probably also constitute significant parts of the Alto Pajeu and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most T(DM) ages range from 1.2 to 1.6 Ga. Brasiliano plutons range from ca. 640 to 540 Ma, and their T(DM) ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U-Pb ages, Sm-Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640 -610 Ma and have T(DM) ages less than 1.5 Ga. Stage 11 (610-590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older T(DM) ages (ca. 1.8-2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; T(DM) from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550-530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments. (C) 2011 Elsevier Ltd. All rights reserved.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq (Conselho Nacional de Pesquisas)U.S. National Science Foundation (NSF)U. S. National Science Foundation (NSF
- …