4,441 research outputs found

    Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate

    Full text link
    A detailed analysis of the growth of a BEC is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan et al., for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modelling of growth implicitly gives a model of the spatial shape of the condensate vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our method may give substantially different results for condensate numbers and temperatures obtained from phenomentological fits, and indicates the need for more systematic investigation of the growth dynamics of the condensate from a supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure

    Nuclear quantum effects in solids using a colored-noise thermostat

    Full text link
    We present a method, based on a non-Markovian Langevin equation, to include quantum corrections to the classical dynamics of ions in a quasi-harmonic system. By properly fitting the correlation function of the noise, one can vary the fluctuations in positions and momenta as a function of the vibrational frequency, and fit them so as to reproduce the quantum-mechanical behavior, with minimal a priori knowledge of the details of the system. We discuss the application of the thermostat to diamond and to ice Ih. We find that results in agreement with path-integral molecular dynamics can be obtained using only a fraction of the computational effort.Comment: submitted for publicatio

    Macroscopic Expression Connecting the Rate of Energy Dissipation and Violation of the Fluctuation-Response Relation

    Full text link
    A direct connection between the magnitude of the violation of the fluctuation-response relation (FRR) and the rate of energy dissipation is presented in terms of field variables of nonequilibrium systems. Here, we consider the density field of a colloidal suspension either in a relaxation process or in a nonequilibrium steady state driven by an external field. Using a path-integral representation of the temporal evolution of the density field, we find an equality that relates the magnitude of the violation of the FRR for scalar and vector potentials of the velocity field to the rate of energy dissipation for the entire system. Our result demonstrates that the violation of the FRR for field variables captures the entropic component of the dissipated free energy.Comment: 4 pages, a major reviso

    Quantum turbulence and correlations in Bose-Einstein condensate collisions

    Full text link
    We investigate numerically simulated collisions between experimentally realistic Bose-Einstein condensate wavepackets, within a regime where highly populated scattering haloes are formed. The theoretical basis for this work is the truncated Wigner method, for which we present a detailed derivation, paying particular attention to its validity regime for colliding condensates. This paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both single-trajectory solutions, which reveal the presence of quantum turbulence in the scattering halo, and ensembles of trajectories, which we use to calculate quantum-mechanical correlation functions of the field

    Quantum turbulence in condensate collisions: an application of the classical field method

    Full text link
    We apply the classical field method to simulate the production of correlated atoms during the collision of two Bose-Einstein condensates. Our non-perturbative method includes the effect of quantum noise, and provides for the first time a theoretical description of collisions of high density condensates with very large out-scattered fractions. Quantum correlation functions for the scattered atoms are calculated from a single simulation, and show that the correlation between pairs of atoms of opposite momentum is rather small. We also predict the existence of quantum turbulence in the field of the scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure

    Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation

    Get PDF
    The process of cascaded downconversion and sum-frequency generation inside an optical cavity has been predicted to be a potential source of three-mode continuous-variable entanglement. When the cavity is pumped by two fields, the threshold properties have been analysed, showing that these are more complicated than in well-known processes such as optical parametric oscillation. When there is only a single pumping field, the entanglement properties have been calculated using a linearised fluctuation analysis, but without any consideration of the threshold properties or critical operating points of the system. In this work we extend this analysis to demonstrate that the singly pumped system demonstrates a rich range of threshold behaviour when quantisation of the pump field is taken into account and that asymmetric polychromatic entanglement is available over a wide range of operational parameters.Comment: 24 pages, 15 figure

    Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise

    Full text link
    We perform fully three-dimensional simulations, using the truncated Wigner method, to investigate the reflection of Bose-Einstein condensates from abrupt potential barriers. We show that the inter-atomic interactions can disrupt the internal structure of a cigar-shaped cloud with a high atom density at low approach velocities, damping the center-of-mass motion and generating vortices. Furthermore, by incorporating quantum noise we show that scattering halos form at high approach velocities, causing an associated condensate depletion. We compare our results to recent experimental observations.Comment: 5 figure

    Sum rule for response function in nonequilibrium Langevin systems

    Full text link
    We derive general properties of the linear response functions of nonequilibrium steady states in Langevin systems. These correspond to extension of the results which were recently found in Hamiltonian systems [A. Shimizu and T. Yuge, J. Phys. Soc. Jpn. {\bf 79}, 013002 (2010)]. We discuss one of the properties, the sum rule for the response function, in particular detail. We show that the sum rule for the response function of the velocity holds in the underdamped case, whereas it is violated in the overdamped case. This implies that the overdamped Langevin models should be used with great care. We also investigate the relation of the sum rule to an equality on the energy dissipation in nonequilibrium Langevin systems, which was derived by Harada and Sasa.Comment: 8 page

    Three-body recombination of ultracold Bose gases using the truncated Wigner method

    Get PDF
    We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on cond-mat mad
    • …
    corecore