23 research outputs found

    Observing How Glutathione and S-Hexyl Glutathione Bind to Glutathione S-Transferase from Rhipicephalus (Boophilus) microplus

    No full text
    Rhipicephalus (Boophilus) microplus is one of the most widespread ticks causing a massive loss to livestock production. The long-term use of acaracides rapidly develops acaracide resistance. In R. microplus, enhancing the metabolic activity of glutathione S-transferase (RmGST) is one of the mechanisms underlying acaracide resistance. RmGST catalyzes the conjugation of glutathione (GSH) to insecticides causing an easy-to-excrete conjugate. The active RmGST dimer contains two active sites (hydrophobic co-substrate binding site (H-site) and GSH binding site (G-site)) in each monomer. To preserve the insecticide efficacy, s-hexyl glutathione (GTX), a GST inhibitor, has been used as a synergist. To date, no molecular information on the RmGST-GSH/GTX complex is available. The insight is important for developing a novel RmGST inhibitor. Therefore, in this work, molecular dynamics simulations (MD) were performed to explore the binding of GTX and GSH to RmGST. GSH binds tighter and sits rigidly inside the G-site, while flexible GTX occupies both active sites. In GSH, the backbone mainly interacts with W8, R43, W46, K50, N59, L60, Q72, and S73, while its thiol group directs to Y7. In contrast, the aliphatic hexyl of GTX protrudes into the H-site and allows a flexible peptide core to form various interactions. Such high GTX flexibility and the protrusion of its hexyl moiety to the H-site suggest the dual role of GTX in preventing the conjugation reaction and the binding of acaracide. This insight can provide a better understanding of an important insecticide-resistance mechanism, which may in turn facilitate the development of novel approaches to tick control

    Ion Permeation in the NanC Porin from Escherichia coli: Free Energy Calculations along Pathways Identified by Coarse-Grain Simulations

    No full text
    Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K+ and Cl– ions’ permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for umbrella sampling-based free energy simulations. We find distinct tubelike pathways connecting specific binding sites for K+ and, more pronounced, for Cl– ions. Both ions permeate the porin preserving almost all of their first hydration shell. The calculated free energy barriers are G# ≈ 4 kJ/mol and G# ≈ 8 kJ/mol for Cl– and K+, respectively. Within the approximations associated with these values, discussed in detail in this work, we suggest that the porin is slightly selective for Cl– versus K+. Our suggestion is consistent with the experimentally observed weak Cl– over K+ selectivity. A rationale for the latter is suggested by a comparison with previous calculations on strongly anion selective porins
    corecore