7,776 research outputs found

    Could CuB be the site of redox linkage in cytochrome c oxidase?

    Get PDF
    This paper explores the proton pumping function of cytochrome c oxidase [ferrocytochrome-c:oxygen oxidoreductase (EC 1.9.3.1)] based upon redox linkage at the "high-potential" CU(B) center. A model is proposed that is derived from a redox-linked ligand exchange mechanism previously described for the Cu(A) site. Qualitative analysis of this mechanism indicates that such a mechanism is feasible. However, the relatively short distance between Cu(B) and cytochrome a3 implies that the uncoupling electron transfers are quite facile. In addition, the position of the Cu(B) center with respect to the inner mitochondrial membrane argues against redox linkage at the Cu(B) site

    Estimating the central charge from the R\'enyi entanglement entropy

    Full text link
    We calculate the von Neumann and R\'enyi bipartite entanglement entropy of the O(2)O(2) model with a chemical potential on a 1+1 dimensional Euclidean lattice with open and periodic boundary conditions. We show that the Calabrese-Cardy conformal field theory predictions for the leading logarithmic scaling with the spatial size of these entropies are consistent with a central charge c=1c=1. This scaling survives the time continuum limit and truncations of the microscopic degrees of freedom, modifications which allow us to connect the Lagrangian formulation to quantum Hamiltonians. At half-filling, the forms of the subleading corrections imposed by conformal field theory allow the determination of the central charge with an accuracy better than two percent for moderately sized lattices. We briefly discuss the possibility of estimating the central charge using quantum simulators.Comment: 10 pages, 8 figures, 3 table

    Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage

    Get PDF
    We report that a ternary magnesium nickel boride (MgNi_(2.5)B_2) mixed with LiH and MgH_2 can be hydrogenated reversibly forming LiBH_4 and Mg_2NiH_4 at temperatures below 300 °C. The ternary boride was prepared by sintering a mechanically milled mixture of MgB_2 and Ni precursors at 975 °C under inert atmosphere. Hydrogenation of the ternary, milled with LiH and MgH_2, was performed under 100 to 160 bar H_2 at temperatures up to 350 °C. Analysis using X-ray diffraction, Fourier transform infrared, and ^(11)B magic angle spinning NMR confirmed that the ternary boride was hydrogenated forming borohydride anions. The reaction was reversible with hydrogenation kinetics that improved over three cycles. This work suggests that there may be other ternary or higher order boride phases useful for reversible hydrogen storage

    Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations

    Full text link
    We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN2_{2}, OsN2_{2} and OsO2_{2} are mechanically stable. In particular OsN2_{2} has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN2_{2} is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006
    • …
    corecore