7 research outputs found

    Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer

    Get PDF
    An Author Correction to this article was published on 29 May 2018 https://www.nature.com/articles/s41477-018-0163-4 http://eprints.whiterose.ac.uk/131699/ Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching

    The use of contact mode Atomic Force Microscopy in aqueous medium for structural analysis of spinach photosynthetic complexes

    No full text
    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies
    corecore