46 research outputs found

    Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)

    Get PDF
    Epitaxial FeRh(100) films (CsCl structure, ∼10 ML \sim 10\ ML\ thick), prepared {\it in-situ} on a W(100) single crystal substrate, have been investigated via valence band and core level photoemission. The presence of the temperature-induced, first-order, antiferromagnetic to ferromagnetic (AF→\rightarrow FM) transition in these films has been verified via linear dichroism in photoemission from the Fe 3pp levels. Core level spectra indicate a large moment on the Fe atom, practically unchanged in the FM and AF phases. Judging from the valence band spectra, the metamagnetic transition takes place without substantial modification of the electronic structure. In the FM phase, the spin-resolved spectra compare satisfactorily to the calculated spin-polarized bulk band structure.Comment: 7 pages, 5 figure

    Dynamics of the magnetic and structural a -> e phase transition in Iron

    Full text link
    We have studied the high-pressure iron bcc to hcp phase transition by simultaneous X-ray Magnetic Circular Dichroism (XMCD) and X-ray Absorption Spectroscopy (XAS) with an X-ray dispersive spectrometer. The combination of the two techniques allows us to obtain simultaneously information on both the structure and the magnetic state of Iron under pressure. The magnetic and structural transitions simultaneously observed are sharp. Both are of first order in agreement with theoretical prediction. The pressure domain of the transition observed (2.4 ±\pm 0.2 GPa) is narrower than that usually cited in the literature (8 GPa). Our data indicate that the magnetic transition slightly precedes the structural one, suggesting that the origin of the instability of the bcc phase in iron with increasing pressure is to be attributed to the effect of pressure on magnetism as predicted by spin-polarized full potential total energy calculations

    Lattice dynamics and structural stability of ordered Fe3Ni, Fe3Pd and Fe3Pt alloys

    Full text link
    We investigate the binding surface along the Bain path and phonon dispersion relations for the cubic phase of the ferromagnetic binary alloys Fe3X (X = Ni, Pd, Pt) for L12 and DO22 ordered phases from first principles by means of density functional theory. The phonon dispersion relations exhibit a softening of the transverse acoustic mode at the M-point in the L12-phase in accordance with experiments for ordered Fe3Pt. This instability can be associated with a rotational movement of the Fe-atoms around the Ni-group element in the neighboring layers and is accompanied by an extensive reconstruction of the Fermi surface. In addition, we find an incomplete softening in [111] direction which is strongest for Fe3 Ni. We conclude that besides the valence electron density also the specific Fe-content and the masses of the alloying partners should be considered as parameters for the design of Fe-based functional magnetic materials.Comment: Revised version, accepted for publication in Physical Review

    Strömungsdoppelbeugung in leuchtenden Kohlenwasserstoffflammen

    No full text

    Sichtbarmachung von Gefügestrukturen durch Interferenz-Aufdampfschichten

    No full text

    Lichtoptische Größenbestimmung von Rußteilchen

    No full text

    Allgemeines über das Gesamtgebiet

    No full text

    Abbildung ferromagnetischer Bezirke (Lorentz-Mikroskopie)

    No full text

    Moment-volume instabilities in Ti

    No full text
    We measured the thermal expansion and the specific heat of TixFe100-x alloys with x = 30.5, 32.5 and 35, all with hexagonal C14 laves phase structure (MgZn2) like TiFe2, and determine the temperature dependence of the magnetic contributions to the thermal expansion αmag\alpha_{mag} and the specific heat cmag. For fixed composition αmag(T)\alpha_{mag}(T) and cmag(T)c_{mag}(T) show the same type of behavior, demonstrating that both anomalies are of the same microscopic nature. They originate from moment-volume fluctuations (antiferromagnetic Invar-effect) as a comparison with total energy calculations as a function of atomic volume and moment for TiFe2 reveals
    corecore