22 research outputs found

    Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As

    Full text link
    The effect of annealing at 250 C on the carrier depth profile, Mn distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low temperatures, is studied by a variety of analytical methods. The vertical gradient in hole concentration, revealed by electrochemical capacitance-voltage profiling, is shown to play a key role in the understanding of conductivity and magnetization data. The gradient, basically already present in as-grown samples, is strongly influenced by post-growth annealing. From secondary ion mass spectroscopy it can be concluded that, at least in thick layers, the change in carrier depth profile and thus in conductivity is not primarily due to out-diffusion of Mn interstitials during annealing. Two alternative possible models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.

    Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors

    Get PDF
    The asymmetric resonance response in thermally actuated piezoresistive cantilever sensors causes a need for optimization, taking parasitic actuation–sensing effects into account. In this work, two compensation methods based on Wheatstone bridge (WB) input voltage (VWB_in) adjustment and reference circuit involvement were developed and investigated to diminish those unwanted coupling influences. In the first approach, VWB_in was increased, resulting in a higher current flowing through the WB piezoresistors as well as a temperature gradient reduction between the thermal actuator (heating resistor: HR) and the WB, which can consequently minimize the parasitic coupling. Nevertheless, increasing VWB_in (e.g., from 1 to 3.3&thinsp;V) may also yield an unwanted increase in power consumption by more than 10 times. Therefore, a second compensation method was considered: i.e., a reference electronic circuit is integrated with the cantilever sensor. Here, an electronic reference circuit was developed, which mimics the frequency behavior of the parasitic coupling. By subtracting the output of this circuit from the output of the cantilever, the resonance response can thus be improved. Both simulated and measured data show optimized amplitude and phase characteristics around resonant frequencies of 190.17 and 202.32&thinsp;kHz, respectively. With this phase optimization in place, a phase-locked-loop (PLL) based system can be used to track the resonant frequency in real time, even under changing conditions of temperature (T) and relative humidity (RH), respectively. Finally, it is expected to enhance the sensitivity of such piezoresistive electro-thermal cantilever sensors under loading with any target analytes (e.g., particulate matter, gas, and humidity).</p

    Dispersion force for materials relevant for micro and nanodevices fabrication

    Full text link
    The dispersion (van der Waals and Casimir) force between two semi-spaces are calculated using the Lifshitz theory for different materials relevant for micro and nanodevices fabrication, namely, gold, silicon, gallium arsenide, diamond and two types of diamond-like carbon (DLC), silicon carbide, silicon nitride and silicon dioxide. The calculations were performed using recent experimental optical data available in the literature, usually ranging from the far infrared up to the extreme ultraviolet bands of the electromagnetic spectrum. The results are presented in the form of a correction factor to the Casimir force predicted between perfect conductors, for the separation between the semi-spaces varying from 1 nanometre up to 1 micrometre. The relative importance of the contributions to the dispersion force of the optical properties in different spectral ranges is analyzed. The role of the temperature for semiconductors and insulators is also addressed. The results are meant to be useful for the estimation of the impact of the Casimir and van der Waals forces on the operational parameters of micro and nanodevices

    Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling

    Get PDF
    The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from 436 MPa compressive, to 13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5–640 kHz and quality factor above 1819 in vacuum obtained

    Size-selective electrostatic sampling and removal of nanoparticles on silicon cantilever sensors for air-quality monitoring

    No full text
    This paper reports the size-selective sampling and removal of airborne nanoparticles (NP) using a silicon resonant micro cantilever mass balance combined with a miniaturized electrostatic precipitator (ESP). This allows to design an overnight-refreshable, pocket-sized, autarkic monitor for NP mass concentration and size in the range below 300 nm

    Low-cost wearable cantilever-based nanoparticle sensor microsystem for personal health and safety monitoring

    No full text
    A low-cost pocket-sized airborne nanoparticle (NP) detector based on a silicon microelectromechanical cantilever is described oscillating at its fundamental in-plane resonance frequency. For direct reading of NP concentrations, the monitoring system consists of signal-conditioning electronics for NP sampling as well as tracking of frequency shift by the attached NP mass. Weight and cost of this first fully integrated personal gravimetric airborne NP monitor (Cantor-2) are comparable to low-cost optical fine-particle sensors but beyond this it can detect ultra-fine particles (UFPs) of less than 100 nm in diameter. Real-time measurements with engineered carbon NPs as well as carbon black NPs exhibited a zero-offset linear correlation to reference measurements using a standard fast mobility particle sizer (FMPS). A limit of detection (LOD) of better than 10 ÎĽg/m3 was found within a response time of 6 min, i.e., a typical short-term NP exposure duration

    Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection

    No full text
    In this paper, the asymmetric resonance frequency (f â‚€) responses of thermally in-plane excited silicon cantilevers for a pocket-sized, cantilever-based airborne nanoparticle detector (Cantor) are analysed. By measuring the shift of f â‚€ caused by the deposition of nanoparticles (NPs), the cantilevers are used as a microbalance. The cantilever sensors are low cost manufactured from silicon by bulk-micromachining techniques and contain an integrated p-type heating actuator and a sensing piezoresistive Wheatstone bridge. f â‚€ is tracked by a homemade phase-locked loop (PPL) for real-time measurements. To optimize the sensor performance, a new cantilever geometry was designed, fabricated and characterized by its frequency responses. The most significant characterisation parameters of our application are f â‚€ and the quality factor (Q), which have high influences on sensitivity and efficiency of the NP detector. Regarding the asymmetric resonance signal, a novel fitting function based on the Fano resonancereplacing the conventionally used function of the simple harmonic oscillator and a method to calculate Q by its fitting parameters were developed for a quantitative evaluation. To obtain a better understanding of the resonance behaviours, we analysed the origin of the asymmetric line shapes. Therefore, we compared the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator. In correspondence to the Fano effect, we could reconstruct the measured resonance curves by coupling two signals with constant amplitude and the expected signal of the cantilever, respectively. Moreover, the phase of the measurement signal can be analysed by this method, which is important to understand the locking process of the PLL circuit. Besides the frequency analysis, experimental results and calibration measurements with different particle types are presented. Using the described analysis method, decentresults to optimize a next generation of Cantor are expected
    corecore