9,233 research outputs found

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    Galaxy Morphology - Halo Gas Connections

    Full text link
    We studied a sample of 38 intermediate redshift MgII absorption-selected galaxies using (1) Keck/HIRES and VLT/UVES quasar spectra to measure the halo gas kinematics from MgII absorption profiles and (2) HST/WFPC-2 images to study the absorbing galaxy morphologies. We have searched for correlations between quantified gas absorption properties, and host galaxy impact parameters, inclinations, position angles, and quantified morphological parameters. We report a 3.2-sigma correlation between asymmetric perturbations in the host galaxy morphology and the MgII absorption equivalent width. We suggest that this correlation may indicate a connection between past merging and/or interaction events in MgII absorption-selected galaxies and the velocity dispersion and quantity of gas surrounding these galaxies.Comment: 6 pages; 3 figures; contributed talk for IAU 199: Probing Galaxies through Quasar Absorption Line

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    The good, the bad and the ugly .... of Horava gravity

    Full text link
    I review the good, the bad and the ugly of the non-projectable versions of Horava gravity. I explain how this non-relativistic theory was constructed and why it was touted with such excitement as a quantum theory of gravity. I then review some of the issues facing the theory, explaining how strong coupling occurs and why this is such a problem for both phenomenology and the question of renormalisability. Finally I comment on possible violations of Equivalence Principle, and explain why these could be an issue for Blas et al's "healthy extension". This paper was presented as a talk at PASCOS 2010 in Valencia.Comment: 7 page

    Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions

    Full text link
    We calculate the partition function Z(G,Q,v)Z(G,Q,v) of the QQ-state Potts model exactly for strips of the square and triangular lattices of various widths LyL_y and arbitrarily great lengths LxL_x, with a variety of boundary conditions, and with QQ and vv restricted to satisfy conditions corresponding to the ferromagnetic phase transition on the associated two-dimensional lattices. From these calculations, in the limit LxL_x \to \infty, we determine the continuous accumulation loci B{\cal B} of the partition function zeros in the vv and QQ planes. Strips of the honeycomb lattice are also considered. We discuss some general features of these loci.Comment: 12 pages, 12 figure
    corecore