42 research outputs found

    COBALT IONS STIMULATE A FIBROTIC RESPONSE THROUGH MATRIX REMODELLING, FIBROBLAST CONTRACTION AND RELEASE OF PRO-FIBROTIC SIGNALS FROM MACROPHAGES

    No full text
    Many studies report the adverse responses to metal-on-metal (MoM) hip prostheses, with tissues surrounding failed MoM hip prostheses revealing abundant tissue necrosis and fibrosis. These local effects appear to be initiated by metal ions released from the prosthesis causing the secretion of inflammatory mediators. However, little is known about the effect of the metal ions on tissue remodelling and pseudotumor formation, which are also associated with the failure of MoM hip prostheses. The peri-prosthetic soft tissue masses can lead to pain, swelling, limited range of joint movement and extensive tissue lesion. To elucidate this cellular response, a multidisciplinary approach using both two- and three-dimensional (2D and 3D) in vitro culture systems was employed to study the effects of Co2+ and Cr3+ on human fibroblast activation and mechanobiology. Co2+ induced a fibrotic response, characterised by cytoskeletal remodelling and enhanced collagen matrix contraction. This was associated with increased cell stiffness and contractile forces as measured by atomic force microscopy and traction force microscopy, respectively. These effects were triggered by the generation of reactive oxygen species (ROS). Moreover, this fibrotic response was enhanced in the presence of macrophages, which increased the prevalence of a-smooth muscle actin (a-SMA)-positive fibroblasts and collagen synthesis. Cr3+ did not show any significant effect on fibroblast activation. Co2+ promoted matrix remodelling by fibroblasts that was further enhanced by macrophage signalling. Use of alternative implant materials or manipulation of this fibrotic response could provide an opportunity for enhancing the success of prostheses utilising CoCr alloys

    Novel Photocatalytic Nanocomposite Made of Polymeric Carbon Nitride and Metal Oxide Nanoparticles

    No full text
    Semiconducting polymers are promising materials for photocatalysis, batteries, fuel applications, etc. One of the most useful photocatalysts is polymeric carbon nitride (PCN), which is usually produced during melamine condensation. In this work, a novel method of obtaining a PCN nanocomposite, in which PCN forms an amorphous layer coating on oxide nanoparticles, is presented. Microwave hydrothermal synthesis (MHS) was used to synthesize a homogeneous mixture of nanoparticles consisting of 80 wt.% AlOOH and 20 wt.% of ZrO2. The nanopowders were mechanically milled with melamine, and the mixture was annealed in the temperature range of 400–600 °C with rapid heating and cooling. The above procedure lowers PCN formation to 400 °C. The following nanocomposite properties were investigated: band gap, specific surface area, particle size, morphology, phase composition, chemical composition, and photocatalytic activity. The specific surface of the PCN nanocomposite was as high as 70 m2/g, and the optical band gap was 3 eV. High photocatalytic activity in phenol degradation was observed. The proposed simple method, as well as the low-cost preparation procedure, permits the exploitation of PCN as a polymer semiconductor photocatalytic material

    JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma

    No full text
    Extranodal, nasal-type natural killer (NK)/T-cell lymphoma (NKCL) is an aggressive malignancy with poor prognosis in which, usually, signal transducer and activator of transcription 3 (STAT3) is constitutively activated and oncogenic. Here, we demonstrate that STAT3 activation mostly results from constitutive Janus kinase (JAK) 3 phosphorylation on tyrosine 980, as observed in three of the four tested NKCL cell lines and in 20 of the 23 NKCL tumor samples under study. In one of the cell lines and in 4 of 19 (21%) NKCL primary tumor samples, constitutive JAK3 activation was related to an acquired mutation (A573V or V722I) in the JAK3 pseudokinase domain. We then show that constitutive activation of the JAK3/STAT3 pathway has a major role in NKCL cell growth and survival and in the invasive phenotype. Indeed, NKCL cell growth was slowed down in vitro by targeting JAK3 with chemical inhibitors or small-interfering RNAs. In a human NKCL xenograft mouse model, tumor growth was significantly delayed by the JAK3 inhibitor CP-690550. Altogether, the constitutive activation of JAK3, which can result from JAK3-activating mutations, is a frequent feature of NKCL that deserves to be tested as a therapeutic target
    corecore