7,183 research outputs found

    Family of airfoil shapes for rotating blades

    Get PDF
    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance

    High Lift, Low Pitching Moment Airfoils

    Get PDF
    Two families of airfoil sections which can be used for helicopter/rotorcraft rotor blades or aircraft propellers of a particular shape are prepared. An airfoil of either family is one which could be produced by the combination of a camber line and a thickness distribution or a thickness distribution which is scaled from these. An airfoil of either family has a unique and improved aerodynamic performance. The airfoils of either family are intended for use as inboard sections of a helicopter rotor blade or an aircraft propeller

    Acoustic Tests of a Flexible Spacecraft Model

    Get PDF
    Acoustic tests of flexible spacecraft mode

    Experimental investigation of three helicopter rotor airfoils designed analytically

    Get PDF
    Three helicopter rotor airfoils designed analytically were investigated in a wind tunnel at Mach numbers from about 0.30 to 0.90 and Reynolds from about 0.8 to 2.3 x 10 to the 6th power. The airfoils had thickness-to-chord ratios of 0.08, 0.10, and 0.12 with maximum thickness at 40 percent chord. The camber distribution of each section was the same with maximum camber at 35 percent chord. The 10-percent-thick airfoil was also investigated at Reynolds numbers from 4.8 to 9.4 x 10 to the 6th power. The drag divergence Mach number of the 10-percent-thick airfoil is about 0.83 at a normal-force coefficient of 0 and about 0.72 at a normal-force coefficient of 0.6 at Reynolds numbers near 9 x 10 to the 6th power. The maximum normal-force coefficient is slightly less than that of the NACA 0012 airfoil tested in the same facility. The results indicate that a qualitative evaluation of the drag divergence can be made at normal-force coefficients up to the onset of boundary-layer separation by analytically predicting the onset of sonic flow at the airfoil crest. The qualitative results are conservative with respect to experimental values with the experimental drag divergence Mach number up to 0.05 higher than that indicated by analysis

    Aerodynamic characteristics of three helicopter rotor airfoil sections at Reynolds number from model scale to full scale at Mach numbers from 0.35 to 0.90

    Get PDF
    An investigation was conducted in the Langely 6 by 28 inch transonic tunnel to determine the two dimensional aerodynamic characteristics of three helicopter rotor airfoils at Reynolds numbers from typical model scale to full scale at Mach numbers from about 0.35 to 0.90. The model scale Reynolds numbers ranged from about 700,00 to 1,500,000 and the full scale Reynolds numbers ranged from about 3,000,000 to 6,600,000. The airfoils tested were the NACA 0012 (0 deg Tab), the SC 1095 R8, and the SC 1095. Both the SC 1095 and the SC 1095 R8 airfoils had trailing edge tabs. The results of this investigation indicate that Reynolds number effects can be significant on the maximum normal force coefficient and all drag related parameters; namely, drag at zero normal force, maximum normal force drag ratio, and drag divergence Mach number. The increments in these parameters at a given Mach number owing to the model scale to full scale Reynolds number change are different for each of the airfoils

    The Mystro system: A comprehensive translator toolkit

    Get PDF
    Mystro is a system that facilities the construction of compilers, assemblers, code generators, query interpretors, and similar programs. It provides features to encourage the use of iterative enhancement. Mystro was developed in response to the needs of NASA Langley Research Center (LaRC) and enjoys a number of advantages over similar systems. There are other programs available that can be used in building translators. These typically build parser tables, usually supply the source of a parser and parts of a lexical analyzer, but provide little or no aid for code generation. In general, only the front end of the compiler is addressed. Mystro, on the other hand, emphasizes tools for both ends of a compiler

    Two-dimensional aerodynamic characteristics of three rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    Get PDF
    Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively

    Effect of Blade Planform Variation on a Small-Scale Hovering Rotor

    Get PDF
    A hover test was conducted on a small-scale rotor model for three sets of tapered rotor blades and a baseline rectangular planform rotor blade. All configurations had the same airfoils, twist, and thrust-weighted solidity. The tapered blade planforms had taper initiating at 50, 75, and 94 percent of the blade radius with a taper ratio of 3 to 1 for each blade set. The experiment was conducted for a range of thrust coefficients, and the data were compared to the predictions of three hover analysis methods. The data show the 94 percent tapered blade was slightly more efficient at the higher rotor thrust levels. The other tapered planform rotors did not show the expected improvement over the baseline rotor, and all configurations had similar performance for low thrust coefficients. None of the analysis methods correlated well with the experimental data

    Rotor blade aerodynamic design

    Get PDF
    Aerodynamic performance aspects of rotor blade design are presented. Design considerations, aerodynamic constraints and design variables are described

    Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps

    Get PDF
    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance
    corecore