525 research outputs found
Recommended from our members
Indoor acids and bases.
Numerous acids and bases influence indoor air quality. The most abundant of these species are CO2 (acidic) and NH3 (basic), both emitted by building occupants. Other prominent inorganic acids are HNO3 , HONO, SO2 , H2 SO4 , HCl, and HOCl. Prominent organic acids include formic, acetic, and lactic; nicotine is a noteworthy organic base. Sources of N-, S-, and Cl-containing acids can include ventilation from outdoors, indoor combustion, consumer product use, and chemical reactions. Organic acids are commonly more abundant indoors than outdoors, with indoor sources including occupants, wood, and cooking. Beyond NH3 and nicotine, other noteworthy bases include inorganic and organic amines. Acids and bases partition indoors among the gas-phase, airborne particles, bulk water, and surfaces; relevant thermodynamic parameters governing the partitioning are the acid-dissociation constant (Ka ), Henry's law constant (KH ), and the octanol-air partition coefficient (Koa ). Condensed-phase water strongly influences the fate of indoor acids and bases and is also a medium for chemical interactions. Indoor surfaces can be large reservoirs of acids and bases. This extensive review of the state of knowledge establishes a foundation for future inquiry to better understand how acids and bases influence the suitability of indoor environments for occupants, cultural artifacts, and sensitive equipment
Growth of organic films on indoor surfaces
We present a model for the growth of organic films on impermeable indoor surfaces. The model couples transport through a gas-side boundary layer adjacent to the surface with equilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas phase and the surface film. Model predictions indicate that film growth would primarily be influenced by the gas-phase concentration of SVOCs with octanol-air partitioning (Koa ) values in the approximate range 10≤log Koa ≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time, the film becomes relatively enriched in species with higher log Koa values, while the proportion of gas-phase SVOCs not in equilibrium with the film decreases. Given stable airborne SVOC concentrations, films grow at faster rates initially and then subsequently diminish to an almost steady growth rate. Once an SVOC is equilibrated with the film, its mass per unit film volume remains constant, while its mass per unit area increases in proportion to overall film thickness. The predictions of the conceptual model and its mathematical embodiment are generally consistent with results reported in the peer-reviewed literature
Mathematical modeling of chemically reactive pollutants in indoor air
A general mathematical model is presented for predicting
the concentrations of chemically reactive compounds in indoor air. The model accounts for the effects of ventilation, filtration, heterogeneous removal, direct
emission, and photolytic and thermal chemical reactions.
The model is applied to the induction of photochemically
reactive pollutants into a museum gallery, and the predicted
NO, NO_x-NO, and O_3 concentrations are compared to measured data. The model predicts substantial production
of several species due to chemical reaction, including
HNO_2, HNO_3, NO_3, and N_2O_5. Circumstances in which homogeneous chemistry may assume particular importance
are identified and include buildings with glass walls, indoor combustion sources, and direct emission of olefins
Recommended from our members
Numerical Investigations of the Deposition of Unattached 218Po and 212Pb from Natural Convection Enclosure Flow
Protection of Works of Art From Atmospheric Ozone
Assesses the colorfastness of organic colorants and watercolor pigments tested in atmospheric ozone. A summary of a full report of the Environmental Quality Laboratory, California Institute of Technology, Pasadena
Airborne Particles in Museums
Presents one in a series of research activities aimed at a better understanding of the origin and fate of air pollution within the built environment
Recommended from our members
Indoor Radon and Decay Products: Concentrations, Causes, and Control Strategies
Investigating CO2 Removal by Ca- and Mg-based Sorbents with Application to Indoor Air Treatment
Indoor carbon dioxide (CO 2 ) levels serve as an indicator of ventilation sufficiency in relation to metabolic effluents. Recent evidence suggests that elevated CO 2 exposure (with or without other bioeffluents) may cause adverse cognitive effects. In shelter-in-place (SIP) facilities, indoor CO 2 levels may become particularly elevated. This study evaluates four low-cost alkaline earth metal oxides and hydroxides as CO 2 sorbents for potential use in indoor air cleaning applications. Sorbents studied were MgO, Mg(OH) 2 , Ca(OH) 2 and commercially available soda lime. Uncarbonated sorbents characterized with nitrogen adsorption porosimetry showed BET surface areas in the 5.6–27 m 2 /g range. Microstructural analyses, including X-ray diffraction, thermogravimetric analysis and scanning electron microscopy confirmed the carbonation mechanisms and extent of sorption under environmental conditions typical of indoor spaces. Ca-based sorbents demonstrated higher extent of carbonation than Mg-based sorbents. Laboratory parameterizations, including rate constants ( k ) and carbonation yields ( y ), were applied in material balance models to assess the CO 2 removal potential of Ca-based sorbents in three types of indoor environments. Soda lime ( k = [2.2–3.6] × 10 −3 m 3 mol CO 2 −1 h −1 , y = 0.49–0.51) showed potential for effective use in SIP facilities. For example, CO 2 exposure in a modeled SIP facility could be reduced by 80% for an 8-h sheltering interval and to levels below 5000 ppm for an 8-h period with a practically sized air cleaner. Predicted effectiveness was more modest for bedrooms and classroom
Recommended from our members
Experimental Determination of ETS Particle Deposition in a Low Ventilation Room
Deposition on indoor surfaces is an important removal mechanism for tobacco smoke particles. We report measurements of deposition rates of environmental tobacco smoke particles in a room-size chamber. The deposition rates were determined from the changes in measured concentrations by correcting for the effects of coagulation and ventilation. The air flow turbulent intensity parameter was determined independently by measuring the air velocities in the chamber. Particles with diameters smaller than 0.25 {micro}m coagulate to form larger particles of sizes between 0.25-0.5 {micro}m. The effect of coagulation on the particles larger than 0.5 {micro}m was found to be negligible. Comparison between our measurements and calculations using Crump and Seinfeld's theory showed smaller measured deposition rates for particles from 0.1 to 0.3 {micro}m in diameter and greater measured deposition rates for particles larger than 0.6 {micro}m at three mixing intensities. Comparison of Nazaroff and Cass model for natural convection flow showed good agreement with the measurements for particles larger than 0.1 {micro}m in diameter, however, measured deposition rates exceeded model prediction by a factor of approximately four for particles in size range 0.05-0.1 {micro}m diameter. These results were used to predict deposition of sidestream smoke particles on interior surfaces. Calculations predict that in 10 hours after smoking one cigarette, 22% of total sidestream particles by mass will deposit on interior surfaces at 0.03 air change per hour (ACH), 6% will deposit at 0.5 ACH, and 3% will deposit at 1 ACH
- …