82 research outputs found

    Human oesophageal adenocarcinoma cell lines JROECL 47 and JROECL 50 are admixtures of the human colon carcinoma cell line HCT 116

    Get PDF
    In two recently described human oesophageal adenocarcinoma cell lines JROECL 47 and JROECL 50, derived from one tumour, we detected identical E-cadherin and β-catenin gene mutations as in colon carcinoma cell line HCT 116. We demonstrate by HLA-typing, mutation analysis and microsatellite analysis that cell lines JROECL 47 and JROECL 50 are admixtures of the human colon adenocarcinoma cell line HCT 116. © 2000 Cancer Research Campaig

    Loss of Y-Chromosome during Male Breast Carcinogenesis

    Get PDF
    Loss of Y-chromosome (LOY) is associated with increased cancer mortality in males. The prevalence of LOY in male breast cancer (BC) is unknown. The aim of this study is to assess the presence and prognostic effect of LOY during male BC progression. We included male BC patients diagnosed between 1989 and 2009 (n = 796). A tissue microarray (TMA) was constructed to perform immunohistochemistry and fluorescent in situ hybridization (FISH), using an X and Y probe. We also performed this FISH on a selected number of patients using whole tissue slides to study LOY during progression from ductal carcinoma in situ (DCIS) to invasive BC. In total, LOY was present in 12.7% (n = 92) of cases, whereby LOY was associated with ER and PR negative tumors (p = 0.017 and p = 0.01). LOY was not associated with the outcome. Using whole slides including invasive BC and adjacent DCIS (n = 22), we detected a concordant LOY status between both components in 17 patients. In conclusion, LOY is an early event in male breast carcinogenesis, which generally starts at the DCIS stage and is associated with ER and PR negative tumors

    Implementation of Novel Molecular Biomarkers for Non-small Cell Lung Cancer in the Netherlands:How to Deal With Increasing Complexity

    Get PDF
    The diagnostic landscape of non-small cell lung cancer (NSCLC) is changing rapidly with the availability of novel treatments. Despite high-level healthcare in the Netherlands, not all patients with NSCLC are tested with the currently relevant predictive tumor markers that are necessary for optimal decision-making for today's available targeted or immunotherapy. An expert workshop on the molecular diagnosis of NSCLC involving pulmonary oncologists, clinical chemists, pathologists, and clinical scientists in molecular pathology was held in the Netherlands on December 10, 2018. The aims of the workshop were to facilitate cross-disciplinary discussions regarding standards of practice, and address recent developments and associated challenges that impact future practice. This paper presents a summary of the discussions and consensus opinions of the workshop participants on the initial challenges of harmonization of the detection and clinical use of predictive markers of NSCLC. A key theme identified was the need for broader and active participation of all stakeholders involved in molecular diagnostic services for NSCLC, including healthcare professionals across all disciplines, the hospitals and clinics involved in service delivery, healthcare insurers, and industry groups involved in diagnostic and treatment innovations. Such collaboration is essential to integrate different technologies into molecular diagnostics practice, to increase nationwide patient access to novel technologies, and to ensure consensus-preferred biomarkers are tested

    The CHEK2*1100delC mutation has no major contribution in oesophageal carcinogenesis

    Get PDF
    In response to DNA damage, the cell cycle checkpoint kinase 2 (CHEK2) may phosphorylate p53, Cdc25A and Cdc25C, and regulate BRCA1 function, leading to cell cycle arrest and DNA repair. The truncating germline mutation CHEK2*1100delC abrogates kinase activity and confers low-penetrance susceptibility to breast cancer. We found CHEK2*1100delC in 0.5% of 190 oesophageal squamous cell carcinomas and in 1.5% of 196 oesophageal adenocarcinomas. In addition, we observed the mutation in 3.0% of 99 Barrett's metaplasias and 1.5% of 66 dysplastic Barrett's epithelia, both known precursor lesions of oesophageal adenocarcinoma. Since CHEK2*1100delC mutation frequencies did not significantly differ among oesophageal squamous cell carcinomas, adenocarcinomas and (dysplastic) Barrett's epithelia, as compared to healthy individuals, we conclude that the CHEK2*1100delC mutation has no major contribution in oesophageal carcinogenesis

    TP53 Mutations in Serum Circulating Cell-Free Tumor DNA As Longitudinal Biomarker for High-Grade Serous Ovarian Cancer

    Get PDF
    The aim of this study was to determine an optimal workflow to detect TP53 mutations in baseline and longitudinal serum cell free DNA (cfDNA) from high-grade serous ovarian carcinomas (HGSOC) patients and to define whether TP53 mutations are suitable as biomarker for disease. TP53 was investigated in tissue and archived serum from 20 HGSOC patients by a next-generation sequencing (NGS) workflow alone or combined with digital PCR (dPCR). AmpliSeqâ„¢-focused NGS panels and customized dPCR assays were used for tissue DNA and longitudinal cfDNAs, and Oncomine NGS panel with molecular barcoding was used for baseline cfDNAs. TP53 missense mutations were observed in 17 tissue specimens and in baseline cfDNA for 4/8 patients by AmpliSeq, 6/9 patients by Oncomine, and 4/6 patients by dPCR. Mutations in cfDNA were detected in 4/6 patients with residual disease and 3/4 patients with disease progression within six months, compared to 5/11 patients with no residual disease and 6/13 patients with progression after six months. Finally, mutations were detected at progression in 5/6 patients, but not during chemotherapy. NGS with molecular barcoding and dPCR were most optimal workflows to detect TP53 mutations in baseline and longitudinal serum cfDNA, respectively. TP53 mutations were undetectable in cfDNA during treatment but re-appeared at disease progression, illustrating its promise as a biomarker for disease monitoring

    A comparative evaluation of various invasion assays testing colon carcinoma cell lines

    Get PDF
    Various colon carcinoma cell lines were tested in different invasion assays, i.e. invasion into Matrigel, into confluent fibroblast layers and into chicken heart tissue. Furthermore, invasive capacity and metastatic potential were determined in nude mice. The colon carcinoma cells used were the human cell lines Caco-2, SW-480, SW-620 and HT-29, and the murine lines Colon-26 and -38. None of the human colon carcinoma cells migrated through porous membranes coated with Matrigel; of the murine lines, only Colon-26 did. When incubated in a mixture of Matrigel and culture medium non-invading cells formed spheroid cultures, whereas invading cells showed a stellate outgrowth. Only the heterogeneously shaped (epithelioid and stellate) cells of SW-480 and SW-620 and the spindle-shaped cells of Colon-26 invaded clearly confluent skin and colon fibroblasts as well as chicken heart tissue. However, when transplanted into the caecum of nude and syngeneic mice, all the lines tested were invasive with the exception of Caco-2 cells. We conclude that the outcome of in vitro tests measuring the invasive capacity of neoplastic cells is largely dependent on the test system used. Invasive capacity in vitro is strongly correlated with cells having a spindle cell shape, vimentin expression and E-cadherin down regulation. In contrast, HT-29 and Colon-38 cells having an epithelioid phenotype were clearly invasive and metastatic in vivo, but not in vitro. © 1999 Cancer Research Campaig

    Tumours with loss of MSH6 expression are MSI-H when screened with a pentaplex of five mononucleotide repeats

    Get PDF
    Contains fulltext : 87589.pdf (publisher's version ) (Closed access)BACKGROUND: microsatellite instability (MSI) is commonly screened using a panel of two mononucleotide and three dinucleotide repeats as recommended by a consensus meeting on MSI tumours held at the National Cancer Institute (Bethesda, MD, USA). According to these recommendations, tumours are classified as MSI-H when at least two of the five microsatellite markers show instability, MSI-L when only one marker shows instability and MSS when none of the markers show instability. Almost all MSI-H tumours are characterised by alterations in one of the four major proteins of the mismatch repair (MMR) system (MLH1, MSH2, MSH6 or PMS2) that renders them MMR deficient, whereas MSI-L and MSS tumours are generally MMR proficient. However, tumours from patients with a pathogenic germline mutation in MSH6 can sometimes present an MSI-L phenotype with the NCI panel. The MSH6 protein is not involved in the repair of mismatches of two nucleotides in length and consequently the three dinucleotide repeats of the NCI panel often show stability in MSH6-deficient tumours. METHODS: a pentaplex panel comprising five mononucleotide repeats has been recommended as an alternative to the NCI panel to determine tumour MSI status. Several studies have confirmed the sensitivity, specificity and ease of use of the pentaplex panel; however, its sensitivity for the detection of MSH6-deficient tumours is so far unknown. Here, we used the pentaplex panel to evaluate MSI status in 29 tumours known to harbour an MSH6 defect. RESULTS: MSI-H status was confirmed in 15 out of 15 (100%) cases where matching normal DNA was available and in 28 out of 29 (97%) cases where matching DNA was not available or was not analysed. CONCLUSION: these results show that the pentaplex assay efficiently discriminates the MSI status of tumours with an MSH6 defect
    • …
    corecore