47 research outputs found

    Scenario-based requirements elicitation for user-centric explainable AI

    Get PDF
    Explainable Artificial Intelligence (XAI) develops technical explanation methods and enable interpretability for human stakeholders on why Artificial Intelligence (AI) and machine learning (ML) models provide certain predictions. However, the trust of those stakeholders into AI models and explanations is still an issue, especially domain experts, who are knowledgeable about their domain but not AI inner workings. Social and user-centric XAI research states it is essential to understand the stakeholder’s requirements to provide explanations tailored to their needs, and enhance their trust in working with AI models. Scenario-based design and requirements elicitation can help bridge the gap between social and operational aspects of a stakeholder early before the adoption of information systems and identify its real problem and practices generating user requirements. Nevertheless, it is still rarely explored the adoption of scenarios in XAI, especially in the domain of fraud detection to supporting experts who are about to work with AI models. We demonstrate the usage of scenario-based requirements elicitation for XAI in a fraud detection context, and develop scenarios derived with experts in banking fraud. We discuss how those scenarios can be adopted to identify user or expert requirements for appropriate explanations in his daily operations and to make decisions on reviewing fraudulent cases in banking. The generalizability of the scenarios for further adoption is validated through a systematic literature review in domains of XAI and visual analytics for fraud detection

    Rice Stress-Resistant SNP Database.

    Get PDF
    BACKGROUND:Rice (Oryza sativa L.) yield is limited inherently by environmental stresses, including biotic and abiotic stresses. Thus, it is of great importance to perform in-depth explorations on the genes that are closely associated with the stress-resistant traits in rice. The existing rice SNP databases have made considerable contributions to rice genomic variation information but none of them have a particular focus on integrating stress-resistant variation and related phenotype data into one web resource. RESULTS:Rice Stress-Resistant SNP database (http://bioinformatics.fafu.edu.cn/RSRS) mainly focuses on SNPs specific to biotic and abiotic stress-resistant ability in rice, and presents them in a unified web resource platform. The Rice Stress-Resistant SNP (RSRS) database contains over 9.5 million stress-resistant SNPs and 797 stress-resistant candidate genes in rice, which were detected from more than 400 stress-resistant rice varieties. We incorporated the SNPs function, genome annotation and phenotype information into this database. Besides, the database has a user-friendly web interface for users to query, browse and visualize a specific SNP efficiently. RSRS database allows users to query the SNP information and their relevant annotations for individual variety or more varieties. The search results can be visualized graphically in a genome browser or displayed in formatted tables. Users can also align SNPs between two or more rice accessions. CONCLUSION:RSRS database shows great utility for scientists to further characterize the function of variants related to environmental stress-resistant ability in rice

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore